浏览全部资源
扫码关注微信
上海理工大学 光电信息与计算机工程学院,上海 200093
[ "乐燕芬(1978—),女,上海理工大学副教授,E-mail:[email protected]" ]
[ "厉天宸(2000—),男,上海理工大学硕士研究生,E-mail:[email protected]" ]
[ "宋威燃(1998—),男,上海理工大学硕士研究生,E-mail:[email protected]" ]
纸质出版日期:2024-08-20,
网络出版日期:2024-05-07,
收稿日期:2024-01-13,
移动端阅览
乐燕芬, 厉天宸, 宋威燃. 轻量级位置隐私的安全查询方案[J]. 西安电子科技大学学报, 2024,51(4):180-191.
Yanfen LE, Tianchen LI, Weiran SONG. Secure lightweight query solution for location privacy. [J]. Journal of Xidian University, 2024,51(4):180-191.
乐燕芬, 厉天宸, 宋威燃. 轻量级位置隐私的安全查询方案[J]. 西安电子科技大学学报, 2024,51(4):180-191. DOI: 10.19665/j.issn1001-2400.20240402.
Yanfen LE, Tianchen LI, Weiran SONG. Secure lightweight query solution for location privacy. [J]. Journal of Xidian University, 2024,51(4):180-191. DOI: 10.19665/j.issn1001-2400.20240402.
随着各类位置服务相关应用的快速发展
出现了需要对特定兴趣区域的访问用户进行查询和统计的服务需求。现有的查询方案可实现对访问用户的隐私保护
但采用的同态加密协议会引入较高的计算开销
无法实现对移动终端的实时统计
且存在不同兴趣区域的误判问题。基于布隆过滤器和安全向量内积协议
提出一种新的轻量级位置隐私查询方案。该方案设计了一种复合空间布隆过滤器
实现多种类位置数据的高效编码
与一种安全的向量内积计算协议结合
在保护用户位置隐私的前提下允许服务提供商完成对特定兴趣区域用户的访问统计。从理论上证明了方案的正确性和安全性
分析了其计算和通信开销。实验结果表明
该方案与典型代表方案相比
避免了用户在不同兴趣区域的误判问题
提高了查询准确度;在所设定实验条件下
离线和在线计算开销可降低2个数量级
同时可减少约50%通信开销。
With the rapid development of various location-based services related applications
there is a service demand for counting the visiting users to a specific area of interest.Existing schemes realize the privacy protection of visiting users
but the encryption protocol used introduces a high computational overhead
which prevents real-time statistics on mobile users and suffers from the problem of misjudgment in different areas of interest.A new lightweight private location query scheme is proposed based on the bloom filter and scalar product computation.The proposed scheme designs a compound spatial bloom filter to efficiently encode location data
which
in combination with a secure scalar product computation protocol
allows service providers to learn whether a user is at a specific point of interest while preserving the user's location privacy.The proposed scheme can efficiently achieve the user’s position privacy access control while minimizing the overhead of computation and communication.Experimental results show that this scheme avoids the problem of user misjudgment in different areas of interest and improves the query accuracy compared with typical representative schemes;that under the set experimental conditions
the offline and online computational overheads can be reduced by two orders of magnitude
and that the scheme can reduce the communication overhead by about 50%.
位置隐私查询隐私布隆过滤器安全标量积协议
location privacyquery privacybloom filtersecure scalar product
LIANG Y, OUYANG K, JING L, et al. Urbanfm:Inferring Fine-Grained Urban Flows[C]//2019 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD). New York: ACM, 2019:3132-3142.
PRIMAULT V, BOUTET A, MOKHTAR S B, et al. The Long Road to Computational Location Privacy:A Survey[J]. IEEE Communications Surveys &Tutorials, 2019, 21(3):2772-2793.
BI J, ZHAO M, YAO G, et al. SOSVRPos:WiFi Indoor Positioning Using SVR Optimized by PSO[J]. Expert Systems with Applications, 2023, 222(1):119778.
YANG X, WU Z, ZHANG Q. Bluetooth Indoor Localization with Gaussian-Bernoulli Restricted Boltzmann Machine Plus Liquid State Machine[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(1):1-8.
KIA G, RUOTSALAINEN L, TALVITIE J. Toward Accurate Indoor Positioning:An RSS-Based Fusion of UWB and Machine-Learning-Enhanced WiFi[J]. Sensors, 2022, 22(9):3204.
AVOINE G, CALDERONI L, DELVAUX J, et al. Passengers Information in Public Transport and Privacy:Can Anonymous Tickets Prevent Tracking[J]. International Journal of Information Management, 2014, 34(5):682-688.
WANG S, HU Q, SUN Y, et al. Privacy Preservation in Location-Based Services[J]. IEEE Communications Magazine, 2018, 56(3):134-140.
CAO Y, XIAO Y H, TAKAGI S, et al. PGLP:Customizable and Rigorous Location Privacy through Policy Graph[C]//European Symposium on Research in Computer Security. Heidelberg:Springer, 2020:655-676.
MONTJOVEY, HIDALGO C, VERLEYSEN M, et al. Unique in the Crowd:The Privacy Bounds of Human Mobility[J]. Scientific Reports, 2013, 3(1):1376.
乐燕芬, 雷若兰, 施伟斌. 基于匿名指纹集的室内指纹定位隐私保护算法[J]. 计算机应用研究, 2023, 40(11):3425-3431.
LE Yanfen, LEI Ruolan, SHI Weibin. Anonymous Fingerprint Set Based Privacy Preserving Scheme for Indoor Localization[J]. Application Research of Computers, 2023, 40(11):3425-3431.
WU Y, WANG K, GUO R, et al. Enhanced Privacy Preserving Group Nearest Neighbor Search[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(2):459-473.
SARAVANANP S, RAMANI S, REDDY V R, et al. A Novel Approach of Privacy Protection of Mobile Users while Using Location-Based Services Applications[J]. Ad Hoc Networks, 2023,149:103253.
ZHANG S, GUO T, LIU Q, et al. ALPS:Achieving Accuracy-Aware Location Privacy Service via Assisted Regions[J]. Future Generation Computer Systems, 2023,145:189-199.
晏燕, 董卓越, 徐飞, 等. 一种Hilbert编码的本地化位置隐私保护方法[J]. 西安电子科技大学学报, 2023, 50(2):147-160.
YAN Yan, DONG Zhuoyue, XU Fei, et al. Localized Location Privacy Protection Method Using the Hilbert Encoding[J]. Journal of Xidian University, 2023, 50(2):147-160.
LIU H, WU Z, ZHANG E, et al. A Privacy-Aware Visual Query Approach for Location-Based Data[J]. Computer and Graphics, 2023,15:263-273.
SUN J, ZHANG R, ZHANG Y. Privacy-Preserving Spatiotemporal Matching[C]//2013 Proceedings IEEE INFOCOM.Piscataway:IEEE, 2013: 800-808.
ZEILEMAKER N, ERKIN Z, PALMIERI P, et al. Building a Privacy-Preserving Semantic Overlay for Peer-to-Peer Networks[C]//2013 IEEE International Workshop on Information Forensics and Security.Piscataway:IEEE, 2013: 79-84.
PANAYIOTIS K, CONSTANTINOS P, EMMANOUIL M, et al. Lightweight Private Proximity Testing for Geospatial Social Networks[J]. Computer Communications, 2016,73:263-270.
PALMIERI P, CALDERONI L, MAIO D. Spatial Bloom Filters:Enabling Privacy in Location-Aware Applications[J]. Information Security and Cryptology, 2014,8957:16-36.
CALDERONI L, PALMIERI P, MAIO D. Location Privacy without Mutual Trust:The Spatial Bloom Filter[J]. Compute Communications, 2015,68:4-16.
CALDERONI L, PALMIERI P, MAIO D. Probabilistic Properties of the Spatial Bloom Filters and Their Relevance to Cryptographic Protocols[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(7):1710-1721.
PALMIERI P, CALDERONI L, MAIO D. Private Inter-Network Routing for Wireless Sensor Networks and the Internet of Things[C]//2017 ACM International Conference on Computing Frontiers Conference. New York: ACM, 2017:396-401.
LU R, LIN X, SHEN X. SPOC:A Secure and Privacy-Preserving Opportunistic Computing Framework for Mobile-Healthcare Emergency[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(3):614-624.
LI H, SUN L, ZHU H, et al. Achieving Privacy Preservation in WiFi Fingerprint-based Localization[C]//2014 IEEE International Conference on Computer Communications.Piscataway:IEEE, 2014: 2337-2345.
WANG W, GONG Z, ZHANG J. On Location Privacy in Fingerprinting-Based Indoor Positioning System:An Encryption Approach[C]//Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2019:289-298.
ZHU Y, QIU Y, WANG J, et al. Protecting Position Privacy in Range-Based Crowdsourcing Cooperative Localization[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(1):1136-1150.
CSIRO. CSIRO’s Data61:Python Paillier Library(2023)[DB/OL].[2023-08-01]. https://github.com/data61/python-paillier. https://github.com/data61/python-paillierhttps://github.com/data61/python-paillier
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构