浏览全部资源
扫码关注微信
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
[ "陈永(1979—),男,教授,博士,E-mail:[email protected]" ]
[ "常婷(1999—),女,兰州交通大学硕士研究生,E-mail:[email protected]" ]
[ "张冰旺(1999—),男,兰州交通大学硕士研究生,E-mail:[email protected]" ]
纸质出版日期:2024-08-20,
网络出版日期:2024-04-18,
收稿日期:2023-12-24,
移动端阅览
陈永, 常婷, 张冰旺. 混沌映射与中国剩余定理增强的切换认证方案[J]. 西安电子科技大学学报, 2024,51(4):192-205.
Yong CHEN, Ting CHANG, Bingwang ZHANG. Handover authentication enhancement scheme based on the chaos map and Chinese remainder theorem. [J]. Journal of Xidian University, 2024,51(4):192-205.
陈永, 常婷, 张冰旺. 混沌映射与中国剩余定理增强的切换认证方案[J]. 西安电子科技大学学报, 2024,51(4):192-205. DOI: 10.19665/j.issn1001-2400.20240313.
Yong CHEN, Ting CHANG, Bingwang ZHANG. Handover authentication enhancement scheme based on the chaos map and Chinese remainder theorem. [J]. Journal of Xidian University, 2024,51(4):192-205. DOI: 10.19665/j.issn1001-2400.20240313.
5G-R作为我国下一代高速铁路移动通信系统
其安全性对于保障高速铁路行车安全至关重要。针对高速铁路5G-R网络切换认证过程易受去同步攻击、不具备前向安全性及计算开销大等问题
提出了一种基于切比雪夫混沌映射与中国剩余定理增强的高速铁路切换认证方案。首先
基于切比雪夫混沌映射半群性
设计通信双方密钥协商机制
实现了切换认证过程中源基站与目标基站之间的双向身份鉴权
能够有效抵抗伪基站和去同步攻击。然后
利用中国剩余定理的秘密共享原理
派生出列车和目标基站的会话密钥
确保了链路计数值NCC在切换时的安全传输
从而克服了切换认证不具备前向安全性的不足。最后
利用BAN逻辑形式化理论和Scyther安全分析工具
分别验证了所提方法的安全性
并与同类协议进行安全性和效率分析。结果表明:所提方案安全性更高
在通信和计算开销等方面较比较方法性能更优
能有效满足5G-R切换认证安全的需求。
As the next generation of the high-speed railway mobile communication system in China
the safety of 5G-R is crucial for ensuring railway operation safety.Aiming at the problems of 5G-R network handover authentication process
such as vulnerability to desynchronization attack
lack of forward security and high computing cost
an enhancement scheme based on chebyshev chaotic mapping and the Chinese remainder theorem for high-speed railway handover authentication is proposed.First
based on chebyshev chaotic mapping semigroup
a key negotiation mechanism is designed to realize bidirectional identity authentication between source base station which can effectively resist pseudo-base stations and desynchronization attacks and target base station during handover authentication.Then
by using the secret sharing principle of the Chinese remainder theorem
the session key of the train and target base station is derived
which ensures the secure transmission of link count value next-hop chaining count during handover
and overcomes the shortage of forward security in handover authentication.Finally
the security of the proposed method is verified by using the BAN logic formalization theory and Scyther security analysis tool
and the proposed method is compared with similar protocols for security and efficiency analysis.The results show that the proposed scheme has higher security and better performance than the comparison method in terms of communication and computing overhead
and can effectively meet the requirements of 5G-R handover authentication security.
高速铁路5G-R无线通信切换安全混沌映射密钥协商
high-speed railway5G-R wireless communicationhandover securitychaos mapkey negotiation
陈永, 詹芝贤, 刘雯. 下一代高速铁路LTE-R时间同步网协议脆弱性分析[J]. 铁道学报, 2023, 45(1):63-74.
CHEN Yong, ZHAN Zhixian, LIU Wen. Vulnerability Analysis of Next-Generation High-Speed Railway LTE-R Time Synchronization Network Protocol[J]. Journal of the China Railway Society, 2023, 45(1):63-74.
崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11.
CUI Xinyu, WU Jie, ZHOU Yiqing, et al. Challenges and Key Technologies of Air-Space-Ground Integrated Network[J]. Journal of Xidian University, 2023, 50(1):1-11.
GUO Y, YU Y, SUN B, et al. TCP-E:AnEnhanced Congestion Control Algorithm for Reliable Communication in 5G-R[J]. Lecture Notes in Electrical Engineering, 2022,867:99-109.
王宇. 高速移动场景下的无线通信安全认证技术研究[D]. 成都: 西南交通大学, 2022.
LIU Y B, HUO L J, ZHOU G. TR-AKA:A Two-Phased,Registered Authentication and Key Agreement Protocol for 5G Mobile Networks[J]. IET Information Security, 2022, 16(3):193-207.
WANG Y, ZHANG W F, WANG X M, et al. Improving the Security of LTE-R for High-Speed Railway:from the Access Authentication View[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2):1332-1346.
陈永, 刘雯, 常婷. 基于量子密钥的高速铁路异构网络安全切换[J]. 铁道学报, 2023, 45(11):78-89.
CHEN Yong, LIU Wen, CHANG Ting. Safe Handoff Scheme for High-Speed Railway Heterogeneous Networks Based on Quantum Key[J]. Journal of the China Railway Society, 2023, 45(11):78-89.
赵越, 田波, 陈周国, 等. 基于预认证的高速列车快速安全切换机制[J]. 铁道学报, 2020, 42(6):64-69.
ZHAO Yue, TIAN Bo, CHEN Zhouguo, et al. A Secure Fast Handoff Mechanism Based on Pre-Certification for High-Speed Trains[J]. Journal of the China Railway Society, 2020, 42(6):64-69.
崔琪楣, 赵文静, 顾晓阳, 等. 面向B5G网络的高效切换认证与安全密钥更新机制[J]. 通信学报, 2021, 42(12):96-108. DOI:10.11959/j.issn.1000-436x.2021240http://doi.org/10.11959/j.issn.1000-436x.2021240
CUI Qimei, ZHAO Wenjing, GU Xiaoyang, et al. Efficient Handover Authentication and Security Key-Updating Mechanism for B5G Networks[J]. Journal on Communications, 2021, 42(12):96-108. DOI:10.11959/j.issn.1000-436x.2021240http://doi.org/10.11959/j.issn.1000-436x.2021240
LIU T, WU F, LI X, et al. A New Authentication and Key Agreement Protocol for 5G Wireless Networks[J]. Telecommunication Systems, 2021, 78(3):317-329.
GUPTA S, PARNE B L, CHAUDHARI N S, et al. SEAI:Secrecy and Efficiency Aware Inter-gNB Handover Authentication and Key Agreement Protocol in 5G Communication Network[J]. Wireless Personal Communications, 2022, 122(4):2925-2962.
CAO J, MA M, FU Y, et al. CPPHA:Capability-Based Privacy-Protection Handover Authentication Mechanism for SDN-Based 5G Hetnets[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18(3):1182-1195.
XIAO Y L, GAO S. 5GAKA-LCCO:A Secure 5G Authentication and Key Agreement Protocol with Less Communication and Computation Overhead[J]. Information(Switzerland), 2022, 13(5):1-22.
PARNE B L, GUPTA S, GANDHI K, et al. PPSE:Privacy Preservation and Security Efficient AKA Protocol for 5G Communication Networks[C]//Advanced Networks and Telecommunications Systems(ANTS). Piscataway:IEEE, 2020:1-6.
ZHANG Y, DENG R H, BERTINO E, et al. Robust and Universal Seamless Handover Authentication in 5G Hetnets[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18(2):858-874.
ROY P K, SAHU P, BHATTACHARYA A. Fasthand:A Fast Handover Authentication Protocol for Densely Deployed Small-Cell Networks[J]. Journal of Network and Computer Applications, 2022:103435.
SHARMA A, SHARMA I, JAIN A. A Construction of Security Enhanced and Efficient Handover AKA Protocol in 5G Communication Network[C]//2019 10th International Conference on Computing,Communication and Networking Technologies(ICCCNT).Piscataway:IEEE, 2019: 1-6.
KUMAR A, OM H. Design of A USIM and ECC Based Handover Authentication Scheme for 5G-WLAN Heterogeneous Networks[J]. Digital Communications and Networks, 2020, 6(3):341-353.
AAMIR M, LUCA B, SARDER F A, et al. IndustrialLot in 5G-and-beyond Networks:Vision,Architecture,and Design Trend[J]. IEEE Transactions on Industrial Informatics, 2022, 8(6):4122-4137.
TANG Q, ERMIS O, NGUYEN C D, et al. A Systematic Analysis of 5G Networks with A Focus on 5G Core Security[J]. IEEE Access. 2022,10:18298-18319.
HUANG J, QIAN Y. A Secure and Efficient Handover Authentication and Key Management Protocol for 5G Networks[J]. Journal of Communications and Information Networks, 2020, 5(1):40-49. DOI:j.issn.2096-1081.2020.05.04http://doi.org/j.issn.2096-1081.2020.05.04
MO J, HU Z, SHEN W. A Provably Secure Three-Factor Authentication Protocol Based on Chebyshev Chaotic Mapping for Wireless Sensor Network[J]. IEEE Access, 2022,10:12137-12152.
BACCOURI S, FARHAT H, AZZABI T, et al. Lightweight Authentication Scheme Based on Elliptic Curve El Gamal[J]. Journal of Information and Telecommunication, 2024, 8(2):231-261.
张文芳, 孙海锋, 王宇, 等. 基于自更新哈希链的安全高效车-地鉴权方案[J]. 西南交通大学学报, 2020, 55(6):1171-1180.
ZHANG Wenfang, SUN Haifeng, WANG Yu, et al. Security and Efficiency Enhanced Authentication Scheme Based on Self-Updated Hash Chain for Train-Ground Communication[J]. Journal of Southwest Jiaotong University, 2020, 55(6):1171-1180.
王宇, 张文芳, 王小敏, 等. 基于匿名代理签名的LTE-R车-地无线通信安全认证方案[J]. 铁道学报, 2020, 42(3):76-84.
WANG Yu, ZHANG Wenfang, WANG Xiaomin, et al. A Train-Ground Security Authentication Scheme Based on Anonymous Proxy Signature for LTE-R System[J]. Journal of the China Railway Society, 2020, 42(3):76-84.
秦树增, 赵志鹏, 杨胜, 等. 5G-R承载CTCS-3级列控数据传输研究(2023)[J/OL]. 铁道标准设计,[2024-03-02].https://doi.org/10.13238/j.issn.1004-2954.202306070001https://dx.doi.org/10.13238/j.issn.1004-2954.202306070001.
QIN Shuzeng, ZHAO Zhipeng, YANG Sheng, et al. Study on Transmission of CTCS-3 Train Control Data in 5G-R Network(2023)[J/OL]. Railway Standard Design,[2024-03-02].https://doi.org/10.13238/j.issn.1004-2954.202306070001https://dx.doi.org/10.13238/j.issn.1004-2954.202306070001.
CARMAN D W, KRUUS P S, MATT B J. Constraints and Approaches for Distributed Sensor Network Security[J]. Nai Labs Technical Report, 2000, 1(1):1-39.
ZHANG L, TANG S, ZHU S. An Energy Efficient Authenticated Key Agreement Protocol for SIP-Based Green VoIP Networks[J]. Journal of Network and Computer Applications, 2016,59:126-133.
吴端坡, 金心宇, 蒋路茸, 等. 高速铁路网络环境下掉话率分析[J]. 浙江大学学报(工学版), 2015, 49(4):705-710.
WU Duanpo, JIN Xinyu, JIANG Lurong, et al. Dropped-Call Probability in High Speed Railway Environment[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(4):705-710.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构