浏览全部资源
扫码关注微信
1. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
2. 先进船舶通信与信息技术工业和信息化部重点实验室,黑龙江 哈尔滨 150001
3. 哈尔科夫国立无线电电子大学 先进问题科学研究室,哈尔科夫 61166
[ "戚连刚(1990—),男,副教授,E-mail:[email protected]" ]
[ "张义权(2000—),男,哈尔滨工程大学硕士研究生,E-mail:[email protected]" ]
[ "国强(1972—),男,教授,E-mail:[email protected]" ]
王亚妮(1991—),女,哈尔滨工程大学博士研究生,E-mail:[email protected]
[ "KALIUZHNYI Mykola(1948—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-08-20,
网络出版日期:2024-03-21,
收稿日期:2023-10-22,
移动端阅览
戚连刚, 张义权, 国强, 等. 一种提升均匀自由度的稀疏阵列设计[J]. 西安电子科技大学学报, 2024,51(4):67-77.
Liangang QI, Yiquan ZHANG, Qiang GUO, et al. Sparse array design for improving uniform degrees of freedom. [J]. Journal of Xidian University, 2024,51(4):67-77.
戚连刚, 张义权, 国强, 等. 一种提升均匀自由度的稀疏阵列设计[J]. 西安电子科技大学学报, 2024,51(4):67-77. DOI: 10.19665/j.issn1001-2400.20240307.
Liangang QI, Yiquan ZHANG, Qiang GUO, et al. Sparse array design for improving uniform degrees of freedom. [J]. Journal of Xidian University, 2024,51(4):67-77. DOI: 10.19665/j.issn1001-2400.20240307.
针对压缩阵元间距的互质阵列差分共阵存在孔洞、均匀自由度低导致欠定波达方向估计性能受限的问题
提出了一种改进的稀疏阵列设计。首先
通过分析阵列结构对差分共阵冗余性与孔洞位置的影响
得出调整压缩阵元间距的互质阵列的子阵列位置
能够有效地减少差分共阵的冗余
增加连续延迟
提高均匀自由度;其次
调整子阵列阵元位置
给出设计稀疏阵列物理阵元位置的闭式表达式;然后
根据阵元位置推导得到提出的稀疏阵列自由度、均匀自由度以及差分共阵孔洞位置的闭式表达式。理论分析表明
相同阵元数目时
相较于压缩阵元间距的互质阵列及其改进稀疏阵列
该稀疏阵列具有更高的自由度、均匀自由度。最后
利用基于空间平滑的多重信号分类算法
在多种场景下展开波达方向估计仿真实验。结果表明
提出的稀疏阵列在多种实验条件下均具有更优的波达方向估计性能
验证了该设计的有效性。
An improved sparse array design is proposed to address the limitations of the underdetermined direction of arrival estimation performance caused by holes and low uniform degrees of freedom in the difference co-array of the coprime array with compressed inter-element spacing.First
by analyzing the influence of the array structure on the redundancy and hole position of the difference co-array
it is concluded that adjusting the subarray position of the coprime array with compressed inter-element spacing can effectively reduce the redundancy of the difference co-array
increase the consecutive lags
and improve the uniform degree of freedom.Second
the physical array element positions are adjusted and the closed-form expression for designing sparse array physical array element positions is provided.Then
based on the array element positions
the closed-form expressions for the proposed sparse array degrees of freedom
uniform degrees of freedom
and the difference co-array hole positions are derived.Theoretical analysis shows that
compared to the coprime array with compressed inter-element spacing and the improved sparse array
the proposed array possesses higher degrees of freedom and uniform degrees of freedom with the same number of elements.Finally
simulation experiments on the direction of arrival estimation are conducted in various scenarios using the multiple signal classification algorithm based on spatial smoothing.The results show that the proposed sparse array has a better direction of arrival estimation performance under various experimental conditions
thus verifying the effectiveness of the design.
互质阵列均匀自由度波达方向多重信号分类
coprime arrayuniform degrees of freedomdirection of arrivalmultiple signal classification
刘帅琦, 王布宏, 李龙军, 等. 二维混合MIMO相控阵雷达的DOA估计算法[J]. 西安电子科技大学学报, 2017, 44(3):157-163.
LIU Shuaiqi, WANG Buhong, LI Longjun, et al. DOA Estimation Method for Two-Dimensional Hybrid MIMO Phased-Array Radar[J]. Journal of Xidian University, 2017, 44(3):157-163.
XU Y, ZHENG Z. Joint DOD and DOA Estimation for Bistatic MIMO Radar in the Presence of Unknown Mutual Coupling[J]. Circuits Systems and Signal Processing, 2023, 42(4):2468-2479.
刘恺忻, 付进, 邹男, 等. 利用协方差矩阵拟合的阵列孔径扩展方法[J]. 声学学报, 2023, 48(5):911-919.
LIU Kaixin, FU Jin, ZOU Nan, et al. Array Aperture Extension Method Using Covariance Matrix Fitting[J]. ACTA ACUSTICA, 2023, 48(5):911-919.
蓝晓宇, 姜来, 耿莽河, 等. 共形极化敏感阵列单元失效下的稳健参数估计[J]. 西安电子科技大学学报, 2023, 50 (3):192-201.
LAN Xiaoyu, JIANG Lai, GENG Manghe, et al. Estimation of Robust Parameter in the Presence of Conformal Polarization Sensitive Array Element Failure[J]. Journal of Xidian University, 2023, 50(3):192-201.
孙纯, 方尔正. 矢量阵自适应零陷强干扰抑制目标方位估计方法[J]. 哈尔滨工程大学学报, 2023, 44 (10):1741-1747.
SUN Chun, FANG Erzheng. Adaptive Null Strong Interference Suppression DOA Estimation Method for Vector Arrays[J]. Journal of Harbin Engineering University, 2023, 44(10):1741-1747.
CHENG C, LIU S Y, WU H Z, et al. An Efficient Maximum-Likelihood-Like Algorithm for Near-Field Coherent Source Localization[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7):6111-6116.
ZHANG R, ZHU S Q, XU K J, et al. High-Accuracy DOA Estimation Based on an Improved Sample Correlation Matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2023,20:1-5.
韦娟, 计永祥, 牛俊儒. 一种新的稀疏重构的DOA估计算法[J]. 西安电子科技大学学报, 2018, 45(5):13-18.
WEI Juan, JI Yongxiang, NIU Junru. Novel Algorithm for DOA Estimation Based on the Sparse Reconstruction[J]. Journal of Xidian University, 2018, 45(5):13-18.
MOFFET A. Minimum-Redundancy Linear Arrays[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2):172-175.
PAL P, VAIDYANATHAN P P. Nested Arrays:A Novel Approach to Array Processing with Enhanced Degrees of Freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8):4167-4181.
LIU C L, VAIDYANATHAN P P. Super Nested Arrays:Linear Sparse Arrays with Reduced Mutual Coupling-Part Ⅰ:Fundamentals[J]. IEEE Transactions on Signal Processing, 2016, 64(15):3997-4012.
LIU C L, VAIDYANATHAN P P. Super Nested Arrays:Linear Sparse Arrays with Reduced Mutual Coupling-Part Ⅱ:High-Order Extensions[J]. IEEE Transactions on Signal Processing, 2016, 64(16):4203-4217.
LIU J Y, ZHANG Y M, LU Y L, et al. Augmented Nested Arrays with Enhanced DOF and Reduced Mutual Coupling[J]. IEEE Transactions on Signal Processing, 2017, 65(21):5549-5563.
ZHENG Z, WANG W Q, KONG Y Y, et al. MISC Array:A New Sparse Array Design Achieving Increased Degrees of Freedom and Reduced Mutual Coupling Effect[J]. IEEE Transactions on Signal Processing, 2019, 67(7):1728-1741.
VAIDYANATHAN P P, PAL P. Sparse Sensing with Co-Prime Samplers and Arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2):573-586.
PAL P, VAIDYANATHAN P P. Coprime Sampling and the MUSIC Algorithm[C]//Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE 2011).Piscataway:IEEE, 2011:289-294.
RAZA A, LIU W, SHEN Q. Thinned Coprime Array for Second-Order Difference Co-Array Generation with Reduced Mutual Coupling[J]. IEEE Transactions on Signal Processing, 2019, 68(8):2052-2065.
ZHENG W, ZHANG X F, WANG Y F, et al. Padded Coprime Arrays for Improved DOA Estimation:Exploiting Hole Representation and Filling Strategies[J]. IEEE Transactions on Signal Processing, 2020,68:4597-4611.
QIN S, ZHANG Y D, AMIN M G. Generalized Coprime Array Configurations for Direction-of-Arrival Estimation[J]. IEEE Transactions on Signal Processing, 2015, 63(6):1377-1390.
刘可, 朱泽政, 于军, 等. 基于互质阵列孔洞分析的稀疏阵列设计方法[J]. 电子与信息学报, 2022, 44(1):372-379.
LIU Ke, ZHU Zezheng, YU Jun, et al. Sparse Array Design Methods Based on Hole Analysis of the Coprime Array[J]. Journal of Electronics & Information Technology, 2022, 44(1):372-379.
何劲, 唐莽, 舒汀, 等. 阵元位置互质的线性阵列:互耦分析和角度估计[J]. 电子与信息学报, 2022, 44(8):2852-2858.
HE Jin, TANG Mang, SHU Ting, et al. Linear Coprime Sensor Location Arrays:Mutual Coupling Effect and Angle Estimation[J]. Journal of Electronics & Information Technology, 2022, 44(8):2852-2858.
PATRA R K, DHAR A S. AnImproved CACIS Configuration for DOA Estimation with Enhanced Degrees of Freedom[J]. Circuits Systems and Signal Processing, 2023,42:1860-1872.
WANG X H, CHEN Z H, REN S W, et al. DOA Estimation Based on the Difference and Sum Coarray for Coprime Arrays[J]. Digital Signal Processing, 2017,69:22-31.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构