浏览全部资源
扫码关注微信
兰州理工大学 计算机与通信学院,甘肃 兰州 730050
[ "曹来成(1965—),男,教授,E-mail:[email protected]" ]
[ "后杨宁(1997—),女,兰州理工大学硕士研究生,E-mail:[email protected]" ]
[ "冯涛(1970—),男,研究员,E-mail:[email protected]" ]
[ "郭显(1971—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-08-20,
网络出版日期:2024-03-08,
收稿日期:2023-11-02,
移动端阅览
曹来成, 后杨宁, 冯涛, 等. 面向动态博弈的k-匿名隐私保护数据共享方案[J]. 西安电子科技大学学报, 2024,51(4):170-179.
Laicheng CAO, Yangning HOU, Tao FENG, et al. K-anonymity privacy-preserving data sharing for a dynamic game scheme. [J]. Journal of Xidian University, 2024,51(4):170-179.
曹来成, 后杨宁, 冯涛, 等. 面向动态博弈的k-匿名隐私保护数据共享方案[J]. 西安电子科技大学学报, 2024,51(4):170-179. DOI: 10.19665/j.issn1001-2400.20240201.
Laicheng CAO, Yangning HOU, Tao FENG, et al. K-anonymity privacy-preserving data sharing for a dynamic game scheme. [J]. Journal of Xidian University, 2024,51(4):170-179. DOI: 10.19665/j.issn1001-2400.20240201.
针对训练深度学习模型时
存在缺少大量带标签训练数据和数据隐私泄露等问题
提出了一个面向动态博弈的k-匿名隐私保护数据共享(KPDSDG)方案。首先
引入动态博弈策略设计了最优数据k-匿名方案
在保护数据隐私的同时实现了数据的安全共享。其次
提出了一个数据匿名化评估框架
以匿名数据的可用性、隐私性和信息丢失评估数据匿名化方案
可以进一步提高数据的隐私性和可用性
以降低重新识别的风险。最后
采用条件生成对抗网络生成数据
解决了模型训练缺少大量带标签样本的问题。安全性分析显示
整个共享过程能够保证数据拥有者隐私信息不被泄露。同时实验表明
该方案隐私化后生成的数据训练的模型准确率高于其他方案
最优情况高出8.83%。且与基于原始数据所训练的模型准确率基本一致
最优情况仅相差0.34%。同时该方案具有更低的计算开销。因此该方案同时满足了数据匿名、数据增广和数据安全共享。
Aiming for fact that the deep trained learning model has some problems
such as lack of a large amount of labeled training data and data privacy leakage
a k-anonymity privacy-preserving data sharing for the dynamic game(KPDSDG) scheme is proposed.First
by using the dynamic game strategy
the optimal data k-anonymization scheme is designed
which achieves secure data sharing while protecting data privacy.Second
a data anonymization evaluation framework is proposed to evaluate data anonymization schemes based on the availability
privacy
and information loss of anonymous data
which can further improve the privacy and availability of data and reduce the risk of reidentification.Finally
owing to adopting the conditional generative adversarial network to generate data
the problem that model training lacks a large amount of labeled training samples is solved.The security analysis shows that the entire sharing process can ensure that the privacy information of the data owner is not leaked.Meanwhile
experiment shows that the accuracy of the model trained on the data generated after privacy in this scheme is higher than that of other schemes
with the optimal situation being 8.83% higher
that the accuracy of the proposed solution in this paper is basically consistent with the accuracy of the model trained based on raw data
with a difference of only 0.34% in the optimal situation and that the scheme has a lower computing cost.Therefore
the scheme satisfies data anonymity
data augmentation
and data security sharing simultaneously.
条件生成对抗网络数据匿名化隐私评估隐私保护数据共享
conditional generative adversarial networkdata anonymityprivacy evaluationprivacy-preservingdata sharing
DONG S, WANG P, ABBAS K. A Survey on Deep Learning and its Applications[J]. Computer Science Review, 2021,40:100379.
SU Y, LI Y, ZHANG K, et al. A Privacy-Preserving Public Integrity Check Scheme for Outsourced EHRs[J]. Information Sciences, 2021,542:112-130.
BOERMAN S C, KRUIKEMEIER S, ZUIDERVEEN BORGESIUS F J. Exploring Motivations for Online Privacy Protection Behavior:Insights from Panel Data[J]. Communication Research, 2021, 48(7):953-977.
WANG Z, CHENGN X, SU S, et al. ATLAS:GAN-Based Differentially Private Multi-Party Data Sharing[J]. IEEE Transactions on Big Data, 2023, 9(4):1225-1237.
RATHER I H, KUMAR S. Generative Adversarial Network Based Synthetic Data Training Model for Lightweight Convolutional Neural Networks[J]. Multimedia Tools and Applications, 2024,83:6249-6271.
ZHANG F, ZHANG Y, ZHANG X. Desensitization Method of Meteorological Data Based on Differential Privacy Protection[J]. Journal of Cleaner Production, 2023,389:136117.
ZIGOMITROS A, CASINO F, SOLANAS A, et al. A Survey on Privacy Properties for Data Publishing of Relational Data[J]. IEEE Access, 2020,8:51071-51099.
POVEDA J I, KRSTIĆ M, BAŞAR T. Fixed-Time Nash Equilibrium Seeking in Non-Cooperative Games[C]//2020 59th IEEE Conference on Decision and Control(CDC).Piscataway:IEEE, 2020: 3514-3519.
杜明洋, 杜蒙, 潘继飞, 等. 基于生成对抗网络的雷达脉内信号去噪与识别[J]. 西安电子科技大学学报, 2023, 50(6):133-147.
DU Mingyang, DU Meng, PAN Jifei, et al. Generative Adversarial Model for Radar Intra-Pulse Signal Denoising and Recognition[J]. Journal of Xidian University, 2023, 50(6):133-147.
DOUZAS G, BACAO F. Effective Data Generation for Imbalanced Learning Using Conditional Generative Adversarial Networks[J]. Expert Systems with Applications, 2018,91:464-471.
CHEN M, CANG L S, CHANG Z, et al. Data Anonymization Evaluation Against Re-Identification Attacks in Edge Storage(2023)[J/OL].[2023-02-21]. https://link.springer.com/article/10.1007/s11276-023-03235-6. https://link.springer.com/article/10.1007/s11276-023-03235-6https://link.springer.com/article/10.1007/s11276-023-03235-6
NI C, CANG L S, GOPE P, et al. Data Anonymization Evaluation for Big Data and IoT Environment[J]. Information Sciences, 2022,605:381-392.
PATKI N, WEDGE R, VEERAMACHANENI K. The Synthetic Data Vault[C]//2016 IEEE International Conference on Data Science and Advanced Analytics(DSAA).Piscataway:IEEE, 2016: 399-410.
NEELI J, PATIL S. Insight to Security Paradigm,Research Trend & Statistics in Internet of Things(IoT)[J]. Global Transitions Proceedings, 2021, 2(1):84-90.
KOUACHI A I, SAHRAOUI S, BACHIR A. Per Packet Flow Anonymization in 6lowpan Iot Networks[C]//2018 6th International Conference on Wireless Networks and Mobile Communications(WINCOM).Piscataway:IEEE, 2018: 1-7.
CARUCCIO L, DESIATO D, POLESE G, et al. A Decision-Support Framework for Data Anonymization with Application to Machine Learning Processes[J]. Information Sciences, 2022,613:1-32.
SARKER I H. Deep Learning:A Comprehensive Overview on Techniques,Taxonomy,Applications and Research Directions[J]. SN Computer Science, 2021, 2(6):420.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构