浏览全部资源
扫码关注微信
1. 兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
2. 西安电子科技大学 雷达信号处理全国重点实验室,陕西 西安 710071
[ "逯彦(1989—),男,讲师,E-mail:[email protected]" ]
[ "廖桂生(1963—),男,教授,E-mail:[email protected]" ]
[ "王小鹏(1968—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-08-20,
网络出版日期:2024-01-17,
收稿日期:2023-07-23,
移动端阅览
逯彦, 廖桂生, 王小鹏. 一种自适应加速的多路径匹配追踪重建算法[J]. 西安电子科技大学学报, 2024,51(4):39-50.
Yan LU, Guisheng LIAO, Xiaopeng WANG. Algorithm for the reconstruction of adaptive acceleration multi-path matching pursuit. [J]. Journal of Xidian University, 2024,51(4):39-50.
逯彦, 廖桂生, 王小鹏. 一种自适应加速的多路径匹配追踪重建算法[J]. 西安电子科技大学学报, 2024,51(4):39-50. DOI: 10.19665/j.issn1001-2400.20231204.
Yan LU, Guisheng LIAO, Xiaopeng WANG. Algorithm for the reconstruction of adaptive acceleration multi-path matching pursuit. [J]. Journal of Xidian University, 2024,51(4):39-50. DOI: 10.19665/j.issn1001-2400.20231204.
在压缩感知重建算法中
多路径匹配追踪算法能够通过搜索多个路径提升获得全局最优解的可能性
但产生的大量冗余路径会造成严重的性能损耗。针对此问题
提出了一种基于自适应加速的多路径匹配追踪重建算法。首先
该算法在路径分解时
通过设置阈值门限控制生成的子枝点数量
优化了原算法平均分配路径数的策略
使相干性强的父枝点可以遍历更多的子枝点
限制相干性小的原子被分配到新的路径中;其次
利用首个路径产生的重建残差
设计了新的修剪准则对候选路径进行二次筛选
进一步减少冗余路径的生成
降低了计算支出;最后
在理论上推导了所提算法在理想状态下准确重建信号的有限等距性条件
给出了所提算法在有噪条件下准确重建信号的信噪比界限。仿真结果表明
在一维和二维信号的重建实验中
所提算法在保证较高的重建精度的前提下
与多路径匹配追踪算法相比
有效提升了重建效率。
In compressive sensing reconstruction algorithms
the multi-path matching pursuit algorithm improves the possibility of obtaining the global optimal solution by searching multiple paths
but a large number of redundant paths will cause a serious drop in performance.To solve this problem
a multi-path matching pursuit reconstruction algorithm based on adaptive acceleration is proposed.First
the number of generated child branches is controlled by setting the threshold
optimizing the strategy of the original algorithm in allocating the number of paths evenly
so that the parent branches with a strong coherence traverse more child branches and atoms with a low coherence are restricted from being assigned to new paths.Second
by using the reconstruction residuals generated by the first path
a new pruning criterion is designed to perform secondary screening on candidate paths
thus reducing computational expenses.Finally
under an ideal state
the proposed algorithm derives the restricted isometry property condition to accurately reconstruct the signal
and presents the signal-to-noise ratio limit for the accurate reconstruction of the signal in the presence of noise interference.Simulation results show that in the reconstruction experiments for one-dimensional and two-dimensional signals
the proposed algorithm effectively improves the reconstruction efficiency compared to the multi-path matching pursuit algorithm
while ensuring a high reconstruction accuracy.
压缩感知多路径匹配追踪相干性有限等距性
compressed sensingmulti-path matching pursuitcoherencerestricted isometry property
DONOHO D L. Compressed Sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
CANDÈS E J, TAO T. Decoding by Linear Programming[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
蓝晓宇, 姜来, 耿莽河, 等. 共形极化敏感阵列单元失效下的稳健参数估计[J]. 西安电子科技大学学报, 2023, 50(3):192-201.
LAN Xiaoyu, JIANG Lai, GENG Manghe, et al. Estimation of Robust Parameter in the Presence of Conformal Polarization Sensitive Array Element Failure[J]. Journal of Xidian University, 2023, 50(3):192-201.
贺王鹏, 陈彬强, 李阳, 等. 高速切削欠采样动态信号的压缩感知恢复方法[J]. 西安电子科技大学学报2022, 49(4):82-89.
HE Wangpeng, CHEN Binqiang, LI Yang, et al. Compressed Sensing of Subsampled Dynamic Signals During High-Speed Machining[J]. Journal of Xidian University, 2022, 49(4):82-89.
陈永, 赵梦雪, 陶美风. 多尺度轮廓波分解的群稀疏壁画修复算法[J]. 西安电子科技大学学报, 2022, 49(6):120-128.
CHEN Yong, ZHAO Mengxue, TAO Meifeng. Mural Inpainting Algorithm for Group Sparse Based on Multi-Scale Contourlet Transform Decomposition[J]. Journal of Xidian University, 2022, 49(6):120-128.
SUN T, GE Q, WEN Y, et al. An Under-Sampling Array Signal Processing Method Based on Improved Hadamard Matrix[J]. Applied Sciences, 2022, 12(21):10769.
LEE B, KO K, HONG J, et al. Information Bottleneck Measurement for Compressed Sensing Image Reconstruction[J]. IEEE Signal Processing Letters, 2022,29:1943-1947.
AMALLADINNE V K, CHAMBERLAND J F, NARAYANAN K R. A Coded Compressed Sensing Scheme for Unsourced Multiple Access[J]. IEEE Transactions on Information Theory, 2020, 66(10):6509-6533.
CEN N, GUAN Z, MELODIA T. Compressed Sensing Based Low-Power Multi-View Video Coding and Transmission in Wireless Multi-Path Multi-Hop Networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(9):3122-3137.
XIE W, XIAO J, ZHU P, et al. Deep Compressed Sensing-Based Cascaded Channel Estimation for RIS-Aided Communication Systems[J]. IEEE Wireless Communications Letters, 2022, 11(4):846-850.
NOH Y, HONG S. Compressed Sensing Based Active User Detection in MIMO Systems with One-Bit ADC[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1):1313-1317.
TROPP J, GILBERT A C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12):4655-4666.
DONOHO D L, TSAIG Y, DRORI I, et al. Sparse Solution of Under-Determined Linear Equations by Stagewise Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2):1094-1120.
NEEDELL D, TROPP J A. CoSaMP:Iterative Signal Recovery from Incomplete and Inaccurate Samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3):301-321.
DAI W, MILENKOVIC O. Subspace Pursuit for Compressive Sensing Signal Reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5):2230-2249.
BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-Based Compressive Sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4):1982-2001.
KWON S, WANG J, SHIM B. Multipath Matching Pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(5):2986-3001.
ZHAO J, BAI X, TAO R. Improved RIP-Based Performance Guarantees for Multipath Matching Pursuit[J]. Science China Information Sciences, 2018, 61,102303:1-102303:14.
FU Y L, CHEN Z, XIANG Y J, et al. An Accelerated MMP with a Pruning Tree[J]. IEEE Access, 2019, 7:27115-27123.
ROSSI M, HAIMOVICH A M, ELDAR Y C. Multi-Branch Matching Pursuit with Applications to MIMO Radar(2013)[J/OL].[2013-12-19]. https://arxiv.org/abs/1312.5765. https://arxiv.org/abs/1312.5765https://arxiv.org/abs/1312.5765
CHANG L H, WU J Y. An Improved RIP-Based Performance Guarantee for Sparse Signal Recovery via Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2014, 60(9):5702-5715.
BLUMENSATH T, DAVIES M E. Stagewise Weak Gradient Pursuits[J]. IEEE Transactions on Signal Processing, 2009, 57(11):4333-4346.
WANG J, KWON S, SHIM B. Generalized Orthogonal Matching Pursuit[J]. IEEE Transactions on Signal Processing, 2012, 60(12):6202-6216.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构