浏览全部资源
扫码关注微信
西安电子科技大学 通信工程学院,陕西 西安 710071
[ "张铭津(1988—),女,教授,E-mail:[email protected]" ]
[ "周楠(2002—),女,西安电子科技大学本科生,E-mail:[email protected]" ]
[ "李云松(1974—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-08-20,
网络出版日期:2023-12-27,
收稿日期:2023-07-17,
移动端阅览
张铭津, 周楠, 李云松. 平滑交互式压缩网络的红外小目标检测算法[J]. 西安电子科技大学学报, 2024,51(4):1-14.
Mingjin ZHANG, Nan ZHOU, Yunsong LI. Smooth interactive compression network for infrared small target detection. [J]. Journal of Xidian University, 2024,51(4):1-14.
张铭津, 周楠, 李云松. 平滑交互式压缩网络的红外小目标检测算法[J]. 西安电子科技大学学报, 2024,51(4):1-14. DOI: 10.19665/j.issn1001-2400.20231203.
Mingjin ZHANG, Nan ZHOU, Yunsong LI. Smooth interactive compression network for infrared small target detection. [J]. Journal of Xidian University, 2024,51(4):1-14. DOI: 10.19665/j.issn1001-2400.20231203.
红外小目标检测是对地观测、抢险救灾等诸多领域的重要课题
一直受到学界的广泛关注。由于红外小目标通常只占据几十个像素且分布在整个背景中
因此大范围内探索图像特征之间的语义信息以挖掘目标与背景之间的差异对检测性能的提升至关重要。然而
传统卷积神经网络的编码局域性与计算资源的巨大需求削弱了网络捕获小目标形状和位置的能力
极易产生漏检与虚警。基于此
提出了一种平滑交互式压缩网络模型
主要包含平滑交互模块与交叉关注模块。平滑交互模块在拓展特征图感受野的同时增添其依赖性
提升了网络在复杂背景条件下检测性能的鲁棒性。交叉关注模块综合考量信道的贡献度与剪枝的可解释性
从而动态融合不同分辨率的特征图。最后
在公开的SIRST数据集和IRSTD-1K数据集上的大量试验结果表明
提出的网络可以有效地解决目标丢失、虚警率高、视觉效果不佳等问题。以SIRST数据集为例
与性能第2的模型相比
IoU、nIoU和
P
d
分别提高了约3.05%、3.41%和1.02%;
F
a
和FLOPs分别降低了约33.33%和82.30%。
Infrared Small Target Detection is a critical focus of various fields
including earth observation and disaster relief efforts
receiving considerable attention within the academic community.Since infrared small targets often occupy just a few dozen pixels and are scattered within complex backgrounds
it becomes paramount to extract semantic information from a broad range of image features to distinguish targets from their surroundings and enhance detection performance.Traditional convolutional neural networks
due to their limited receptive fields and substantial computational demands
face challenges in effectively capturing the shape and precise positioning of small targets
leading to missed detections and false alarms.In response to these challenges
this paper proposes a novel Smooth Interactive Compression Network comprising two main components:the Smooth Interaction Module and the Cross Compression Module.The Smooth Interaction Module extends the feature map's receptive field and enhances inter-feature dependencies
thus bolstering the network’s detection robustness in complex background scenarios.The Cross Compression Module takes into account channel contributions and the interpretability of pruning
dynamically fusing feature maps of varying resolutions.Extensive experiments conducted on the publicly available SIRST dataset and IRSTD-1K dataset demonstrate that the proposed network effectively addresses issues such as target loss
a high false alarm rate
and subpar visual results.Taking the SIRST dataset as an example
compared to the second-best performing model
the proposed model achieved a remarkable improvement in metrics:IoU
nIoU
and
P
d
are increased by 3.05%
3.41%
and 1.02%
respectively.Meanwhile
F
a
and FLOPs are decreased by 33.33% and 82.30%
respectively.
红外小目标检测深度学习网络编码模型压缩
Infrared Small Target Detectiondeep learningnetwork codingmodel compression
DESHPANDE S Y, ER M H, VENK R. Max-Mean and Max-Median Filters for Detection of Small Targets[J]. Signal and Data Processing of Small Targets, 1999,3809:74-83.
HAN J, LIU S, QIN G, et al. A Local Contrast Method Combined with Adaptive Background Estimation for Infrared Small Target Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 16(9):1442-1446.
ZHANG M J, WANG N, LI Y, et al. Neural Probabilistic Graphical Model for Face Sketch Synthesis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(7):2623-2637. DOI:10.1109/TNNLS.2019.2933590http://doi.org/10.1109/TNNLS.2019.2933590
ZHANG M J, WU Q, ZHANG J, et al. Fluid Micelle Network for Image Super-Resolution Reconstruction[J]. IEEE Transactions on Cybernetics, 2023, 53(1):578-591.
WANG H, ZHOU L P, WANG L. Miss Detection vs.False Alarm:Adversarial Learning for Small Object Segmentation in Infrared Images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:8509-8518.
DAI Y M, WU Y Q, ZHOU F, et al. Asymmetric Contextual Modulation for Infrared Small Target Detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway:IEEE, 2021:950-959.
ZHANG M J, BAI H, ZHANG J, et al. RKformer:Runge-Kutta Transformer with Random-Connection Attention for Infrared Small Target Detection[C]//The 30th ACM International Conference on Multimedia. New York: ACM, 2022:1730-1738.
TOM V T, PEIL T, MAY L, et al. Morphologybased Algorithm for Point Target Detection in Infrared Backgrounds[J]. Signal and Data Processing of Small Targets International Society for Optics and Photonics, 1993, 1954:2-11.
ZHANG M J, ZHANG R, YANG Y X, et al. ISNet:Shape Matters for Infrared Small Target Detection.[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2022:877-886.
汪西莉, 梁敏, 刘涛. 特征增强的单阶段遥感图像目标检测模型[J]. 西安电子科技大学学报, 2022, 49(3):160-170.
WANG Xili, LIANG Min, LIU Tao. Feature Enhanced Single-Stage Remote Sensing Image Object Detection Model[J]. Journal of Xidian University, 2022, 49(3):160-170.
杨子轩, 肖嵩, 董文倩, 等. 一种引入注意力机制的红外目标检测方法[J]. 西安电子科技大学学报, 2022, 49(3):28-35.
YANG Zixuan, XIAO Song, DONG Wenqian, et al. Thermal Target Detection Method Introducing an Attention Mechanism[J]. Journal of Xidian University, 2022, 49(3):28-35.
董如婵, 焦李成, 赵进, 等. 一种深度融合机制的遥感图像目标检测技术[J]. 西安电子科技大学学报, 2021, 48(5):128-138.
DONG Ruchan, JIAO Licheng, ZHAO Jin, et al. Application of the Deep Fusion Mechanism in Object Detection of Remote Sensing Images[J]. Journal of Xidian University, 2021, 48(5):128-138.
ZHANG M J, WU Q, GUO J, et al. Heat Transfer-Inspired Network for Image Super-Resolution Reconstruction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2):1810-1820.
ZHANG M J, XIN J, ZHANG J, et al. Curvature Consistent Network for Microscope Chip Image Super-Resolution[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12):10538-10551.
ZHANG M J, WANG N, LI Y, et al. Deep Latent Low-Rank Representation for Face Sketch Synthesis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10):3109-3123. DOI:10.1109/TNNLS.2018.2890017http://doi.org/10.1109/TNNLS.2018.2890017
DENG H, SUN X, LIU M, et al. Small Infrared Target Detection Based on Weighted Local Difference Measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7):4204-4214.
ZHAO Y, PAN H, DU C, et al. Bilateral Two-Dimensional Least Mean Square Filter for Infrared Small Target Detection[J]. Infrared Physics & Technology, 2014,65:17-23.
ZHU H, LIU S, DENG L, et al. Infrared Small Target Detection via Low-Rank Tensor Completion with Top-Hat Regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2):1004-1016.
BAI X, BI Y. Derivative Entropy-Based Contrast Measure for Infrared Small-Target Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):2452-2466.
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]//Proceedings of IEEE Conference Computer Vision Pattern Recognition. Piscataway:IEEE, 2016:770-778.
SERGEY Z, NIKOS K. Paying More Attention to Attention:Improving the Performance of Convolutional Neural Networks via Attention Transfer[C]//International Conference on Learning Representations. La Jolla: ICLR, 2017:1-13.
TIAN Y L, KRISHNAN D, ISOLA P. Contrastive Representation Distillation[C]//International Conference on Learning Representations. La Jolla: ICLR, 2020:1-19.
PARK W, KIM D, LU Y. Relational Knowledge Distillation[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:3967-3976.
SHI J, XU J, TASAKA K, et al. SASL:Saliency-Adaptive Sparsity Learning for Neural Network Acceleration[J]. IEEE Transaction Circuits System Video Technology, 2021, 31(5):2008-2019.
HUANG Z, WANG N. Data-Driven Sparse Structure Selection for Deep Neural Networks[C]//Proceedings Europe Conference Computer Vision. Heidelberg:Springer, 2018:304-320.
LIU Z C, MU H Y, ZHANG X Y, et al. MetaPruning:Meta Learning for Automatic Neural Network Channel Pruning[C]//Proceedings IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:3296-3305.
刘侍刚, 张同, 杨建功, 等. 递进式空洞残差深度双目立体匹配网络[J]. 西安电子科技大学学报, 2022, 49(5):175-180.
LIU Shigang, ZHANG Tong, YANG Jiangong, et al. Progressive Dialtion Residual Network for Deep Binocular Stereo Matching[J]. Journal of Xidian University, 2022, 49(5):175-180.
WANG Z, XU X, HUA Z, et al. Lightweight Recognition for the Oestrus Behavior of Dairy Cows Combining YOLO v5n and Channel Pruning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(23):130-140.
LIN T Y, PIOTR D, ROSS G, et al. Feature Pyramid Networks for Object Detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Piscataway:IEEE, 2017:2117-2125.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构