浏览全部资源
扫码关注微信
1. 中国民航大学 安全科学与工程学院,天津 300300
2. 中国民航大学 计算机科学与技术学院,天津 300300
[ "姜来为(1986—),女,讲师,E-mail:[email protected]" ]
[ "顾海洋(2000—),男,中国民航大学硕士研究生,E-mail:[email protected]" ]
谢丽霞(1974—),女,教授,E-mail:[email protected]
[ "杨宏宇(1969—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-08-20,
网络出版日期:2023-12-27,
收稿日期:2023-08-26,
移动端阅览
姜来为, 顾海洋, 谢丽霞, 等. 机器学习在WSN入侵检测中的应用研究[J]. 西安电子科技大学学报, 2024,51(4):206-225.
Laiwei JIANG, Haiyang GU, Lixia XIE, et al. Research on the application of machine learning to intrusion detection in WSN. [J]. Journal of Xidian University, 2024,51(4):206-225.
姜来为, 顾海洋, 谢丽霞, 等. 机器学习在WSN入侵检测中的应用研究[J]. 西安电子科技大学学报, 2024,51(4):206-225. DOI: 10.19665/j.issn1001-2400.20231202.
Laiwei JIANG, Haiyang GU, Lixia XIE, et al. Research on the application of machine learning to intrusion detection in WSN. [J]. Journal of Xidian University, 2024,51(4):206-225. DOI: 10.19665/j.issn1001-2400.20231202.
随着计算机、通信技术的不断发展
网络经常面临各种各样的攻击。无线传感器网络(Wireless Sensor Network
WSN)的分布式和无线传输等特性使其易于遭受网络攻击
为WSN安全防护方案设计带来了严峻考验。入侵检测是一种积极主动的安全防护技术
是网络攻击检测的重要手段
是保障WSN网络环境安全的关键技术。近年来
机器学习方法在许多领域都取得了巨大的发展
在WSN入侵检测领域取得了一定的应用研究成果。为了便于对WSN入侵检测技术进行深入研究
从WSN的特点和WSN入侵检测研究的独特性出发
对近些年该领域的相关研究进行分类综述。首先
简要介绍了WSN所面临的挑战和发展现状。然后
根据WSN的特点分析了入侵检测在WSN中设计时面临的挑战。随后对WSN入侵检测相关研究进行文献综述与分类
重点对基于机器学习的应用研究方法进行分类论述与探讨。最后
讨论该研究方向未来发展前景与方向
为推动WSN入侵检测领域深入研究与实际应用提供参考。
With the continuous development of computer and communication technologies
networks often face a variety of attacks.The distributed and wireless transmission characteristics of the Wireless Sensor Network(WSN) make it easy to suffer from network attacks
which brings a severe test for the design of the WSN security protection program.As an important means of network attack detection
intrusion detection is a proactive security protection technology and a key technology to ensure the security of WSN network environment.In recent years machine learning methods have made tremendous progress in many fields
and have achieved certain application research results in the field of WSN intrusion detection.In order to facilitate the in-depth study of WSN intrusion detection technology
this paper starts from the characteristics of WSN and the uniqueness of WSN intrusion detection research
and categorizes and synthesizes the relevant research in this field in recent years.First
the challenges and development status of the WSN are briefly introduced.Then
the challenges faced when intrusion detection is designed in WSNs are analyzed based on the characteristics of WSNs.Subsequently
literature review and categorization of research related to intrusion detection in WSNs are conducted
focusing on the categorization and discussion of applied research methods based on machine learning.Finally
the future prospects and directions of this research direction are discussed to provide valuable references for promoting in-depth research and practical applications in the field of WSN intrusion detection.
无线传感器网络安全防护入侵检测机器学习
wireless sensor networksafety protectionintrusion detectionmachine learning
吴瑞睿, 刘洁琳. 无线传感器网络综述[J]. 科技创新与应用, 2018,14:65-66.
WU Ruirui, LIU Jielin. Overview of Wireless Sensor Networks[J]. Technology Innovation and Application, 2018,14:65-66.
裴庆祺, 沈玉龙, 马建峰. 无线传感器网络安全技术综述[J]. 通信学报, 2007,8:113-122.
PEI Qingqi, SHEN Yulong, MA Jianfeng. Survey of Wireless Sensor Network Security Techniques[J]. Journal on Communications, 2007,8:113-122.
潘建民, 董必龙, 吕志博. 无线传感器网络技术的军事应用[J]. 数字通信世界, 2017,9:55.
PAN Jianmin, DONG Bilong, LV Zhibo. Military Application of Wireless Sensor Network Technology[J]. Digital Communication World, 2017,9:55.
王慧莹. 无线传感器网络在环境监测中的应用[J]. 科技创新与应用, 2021, 11(28):173-175.
WANG Huiying. Application of Wireless Sensor Networks in Environmental Monitoring[J]. Technology Innovation and Application, 2021, 11(28):173-175.
王金顺. 无线传感器网络在医疗领域的应用研究[J]. 石河子科技, 2023,1:77-78.
WANG Jinshun. Application Research of Wireless Sensor Network in Medical Field[J]. Shihezi Science and Technology, 2023,1:77-78.
赵丽霞, 纪松波. 无线传感器网络在智能交通中的应用[J]. 物联网技术, 2012, 2(6):25-27.
ZHAO Lixia, JI Songbo. Application of Wireless Sensor Networks in Intelligent Transportation System[J]. Internet of Things Technologies, 2012, 2(6):25-27.
刘景美, 闫义博. 人工鱼群特征选择的网络入侵检测系统[J]. 西安电子科技大学学报, 2023, 50(4):132-138.
LIU Jingmei, YAN Yibo. Artificial Fish Feature Selection Network Intrusion Detection System[J]. Journal of Xidian University, 2023, 50(4):132-138.
AHMAD R, WAZIRALI R, ABUAIN T. Machine Learning for Wireless Sensor Networks Security:An Overview of Challenges and Issues[J]. Sensors, 2022, 22(13):1-35.
霍跃华, 吴文昊, 赵法起, 等. 结合协同训练的多视图加密恶意流量检测方法[J]. 西安电子科技大学学报, 2023, 50(4):139-147.
HUO Yuehua, WU Wenhao, ZHAO Faqi, et al. Multi-View Encryption Malicious Traffic Detection Method Combined with Co-Training[J]. Journal of Xidian University, 2023, 50(4):139-147.
姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2):161-166..
YAO Xu, WANG Xiaodan, ZHANG Yuxi, et al. Summary of Feature Selection Algorithms[J]. Control and Decision, 2012, 27(2):161-166.
HELA M, ABIR K, LAMIA C. A Comprehensive Survey on Intrusion Detection Based Machine Learning for IoT Networks[J]. EAI Endorsed Transactions on Security and Safety, 2021, 8(29):e3.
蹇诗婕, 卢志刚, 杜丹, 等. 网络入侵检测技术综述[J]. 信息安全学报, 2020, 5(4):96-122.
JIAN Shijie, LU Zhigang, DU Dan, et al. Overview of Network Intrusion Detection Technology[J]. Journal of Cyber Security, 2020, 5(4):96-122.
SUBRAMANI S, SELVI M. Multi-Objective PSO Based Feature Selection for Intrusion Detection in IoT Based Wireless Sensor Networks[J]. Optik, 2023,273:1-15.
罗富财, 吴飞, 陈倩, 等. 基于机器学习的无线传感器网络入侵检测算法[J]. 哈尔滨工程大学学报, 2020, 41(3):433-440.
LUO Caifu, WU Fei, CHEN Qian, et al. Machine Learning-Based Intrusion Detection Technology for Wireless Sensor Networks[J]. Journal of Harbin Engineering University, 2020, 41(3):433-440.
PRABAKARAN K, KUMARATHARAN N, SURESH G, et al. An Evaluation of Effective Intrusion DoS Detection and Prevention System Based on SVM Classifier for WSN[J]. IOP Conference Series:Materials Science and Engineering, 2020, 925(1):1-11.
MUKARAM S, MOHAMMED O, LAITH A. Improved Binary Gray Wolf Optimizer and SVM for Intrusion Detection System in Wireless Sensor Networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2020,12:1559-1576.
程超, 武静凯, 陈梅. 一种基于RBM-SVM算法的无线传感网络入侵检测算法[J]. 计算机应用与软件, 2022, 39(5):325-329.
CHENG Chao, WU Jingkai, CHEN Mei. An Intrusion Detection Algorithm for Wireless Sensor Network Based on RBM-SVM Algorithm[J]. Computer Applications and Software, 2022, 39(5):325-329.
MOHD N, SINGH A, BHADAURIA S H. A Novel SVM Based IDS for Distributed Denial of Sleep Strike in Wireless Sensor Networks[J]. Wireless Personal Communications, 2020, 111(3):1999-2022.
AMARAN S, MOHAN R M. Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks[C]//2021 International Conference on Artificial Intelligence and Smart Systems(ICAIS).Piscataway:IEEE, 2021: 1100-1104.
WEI M, RONG C M, LIANG E X, et al. An Intrusion Detection Mechanism for Ipv6-Based Wireless Sensor Networks[J]. International Journal of Distributed Sensor Networks, 2022, 18(3):1-15.
LIU G Y, ZHAO H Q, FAN F, et al. An Enhanced Intrusion Detection Model Based on Improved KNN in WSNs[J]. Sensors, 2022, 22(4):1-18.
PAN J S, FAN F, CHU S C, et al. A Lightweight Intelligent Intrusion Detection Model for Wireless Sensor Networks[J]. Security and Communication Networks, 2021,2021:1-15.
GITE P, CHOUHAN K, KRISHNA K M, et al. ML Based Intrusion Detection Scheme for Various Types of Attacks in a WSN Using C4.5 and CART Classifiers[J]. Materials Today:Proceedings, 2023, 80(P3):3769-3776.
JIN J. Intrusion Detection Algorithm and Simulation of Wireless Sensor Network under Internet Environment[J]. Journal of Sensors, 2021,2021:1-10.
朱梦圆, 陈卓, 刘鹏飞, 等. 基于雾计算的无线传感器网络联合入侵检测算法[J]. 北京航空航天大学学报, 2022, 48(10):1943-1950.
ZHU Mengyuan, CHEN Zhuo, LIU Pengfei, et al. Fog Computing-Based Federated Intrusion Detection Algorithm for Wireless Sensor Networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10):1943-1950.
TANYA S, SATYARTHA P, SANDEEP S, et al. Intrusion Detection System in Wireless Sensor Network Using Conditional Generative Adversarial Network[J]. Wireless Personal Communications, 2022, 126(1):911-931.
MENG D, DAI H, SUN Q, et al. Novel Wireless Sensor Network Intrusion Detection Method Based on LightGBM Model[J]. IAENG International Journal of Applied Mathematics, 2022, 52(4):1-7.
JIANG S, ZHAO J, XU X L. SLGBM:An Intrusion Detection Mechanism for Wireless Sensor Networks in Smart Environments[J]. IEEE Access, 2020,8:169548-169558.
ISMAIl S, DAWOUD D, REZA H. A Lightweight Multilayer Machine Learning Detection System for Cyber-Attacks in WSN[C]//2022 IEEE 12th Annual Computing and Communication Workshop and Conference(CCWC).Piscataway:IEEE, 2022: 481-486.
DENER M, AL S, ORMAN A. STLGBM-DDS:An Efficient Data Balanced DoS Detection System for Wireless Sensor Networks on Big Data Environment[J]. IEEE Access, 2022,10:92931-92945.
董瑞洪, 闫厚华, 张秋余, 等. 基于深度森林算法的分布式WSN入侵检测模型[J]. 兰州理工大学学报, 2020, 46(4):103-109.
DONG Ruihong, YAN Houhua, ZHANG Qiuyu, et al. Distributed WSN Intrusion Detection Model Based on Deep Forest Algorithm[J]. Journal of Lanzhou University of Technology, 2020, 46(4):103-109.
TAN X P, SU S J, HUANG Z P, et al. Wireless Sensor Networks Intrusion Detection Based on SMOTE and the RandomForest Algorithm[J]. Sensors, 2019, 19(1):1-15.
刘双, 石飞, 汪烈军, 等. 基于KSOM-PSO算法的无线传感器网络入侵检测研究[J]. 中国科技论文, 2017, 12(2):148-153.
LIU Shuang, SHI Fei, WANG Liejun, et al. Research on Intrusion Detection in Wireless Sensor Networks Based on KSOM-PSO Algorithm[J]. China Sciencepaper, 2017, 12(2):148-153.
KFOURY E, SAAB J, YOUNES P, et al. A Self Organizing Map Intrusion Detection System for RPL Protocol Attacks[J]. International Journal of Interdisciplinary Telecommunications and Networking(IJITN), 2019, 11(1):30-43.
GAUTAMI A, SHANTHINI J, KARTHIK J. A Quasi-Newton Neural Network Based Efficient Intrusion Detection System for Wireless Sensor Network[J]. Computer Systems Science and Engineering, 2023, 45(1):427-443.
ZHANG Y. The WSN Intrusion Detection Method Based on Deep Data Mining[J]. Journal of Cyber Security Technology, 2023, 7(3):1-19.
周志华. 机器学习[M]. 北京: 清华大学出版社, 2015:114-115.
HUSSAIN K, XIA Y, ONAIZAH A N, et al. Hybrid of WOA-ABC and Proposed CNN for Intrusion Detection System in Wireless Sensor Networks[J]. Optik, 2022,271:1-16.
ZHOU J J, YANG T Y, ZHANG J L, et al. Intrusion Detection Model for Wireless Sensor Networks Based on MC-GRU[J]. Wireless Communications and Mobile Computing, 2022,2022:1-11.
LIU Z, GHULAM M, ZHENG J, et al. Intrusion Detection in Wireless Sensor Network Using Enhanced Empirical Based Component Analysis[J]. Future Generation Computer Systems, 2022,135:181-193.
程小辉, 牛童, 汪彦君. 基于序列模型的无线传感网入侵检测系统[J]. 计算机应用, 2020, 40(6):1680-1684. DOI:10.11772/j.issn.1001-9081.2019111948http://doi.org/10.11772/j.issn.1001-9081.2019111948
CHENG Xiaohui, NIU Tong, WANG Yanjun. Wireless Sensor Network Intrusion Detection System Based on Sequence Model[J]. Journal of Computer Applications, 2020, 40(6):1680-1684. DOI:10.11772/j.issn.1001-9081.2019111948http://doi.org/10.11772/j.issn.1001-9081.2019111948
NAGALALLI G, RAVI G. A Novel MegaBAT Optimized Intelligent Intrusion Detection System in Wireless Sensor Networks[J]. Intelligent Automation & Soft Computing, 2023, 35(1):475-490.
RAMANA K, REVATHI A, GAYATHRI A, et al. WOGRU-IDS — An Intelligent Intrusion Detection System for IoT Assisted Wireless Sensor Networks[J]. Computer Communications, 2022,196:195-206.
SARATH K R, SAMPATH P, RAMKUMAR M. Enhanced Elman Spike Neural Network Fostered Intrusion Detection Framework for Securing Wireless Sensor Network[J]. Peer-to-Peer Networking and Applications, 2023, 16(4):1819-1833.
刘拥民, 杨钰津, 罗皓懿, 等. 基于双向循环生成对抗网络的无线传感网入侵检测方法[J]. 计算机应用, 2023, 43(1):160-168. DOI:10.11772/j.issn.1001-9081.2021112001http://doi.org/10.11772/j.issn.1001-9081.2021112001
LIU Yongmin, YANG Yujin, LUO Haoyi, et al. Intrusion Detection Method for Wireless Sensor Network Based on Bidirectional Circulation Generative Adversarial Network[J]. Journal of Computer Applications, 2023, 43(1):160-168. DOI:10.11772/j.issn.1001-9081.2021112001http://doi.org/10.11772/j.issn.1001-9081.2021112001
SINHA S, PAUL A. Neuro-Fuzzy Based Intrusion Detection System for Wireless Sensor Network[J]. Wireless Personal Communications, 2020,114:835-851.
SHI L S, LI K. Privacy Protection and Intrusion Detection System of Wireless Sensor Network Based on Artificial Neural Network[J]. Computational Intelligence and Neuroscience, 2022,2022:1795454.
ZHANG W J, HAN D Z, LI K, et al. Wireless Sensor Network Intrusion Detection System Based on MK-ELM[J]. Soft Computing, 2020,24:12361-12374.
WANG W. An Improved ELM Wireless Sensor Network Intrusion Detection Model Based on an Optimization Algorithm[C]//Proceedings of the 2023 5th Asia Pacific Information Technology Conference. New York: ACM, 2023:95-102.
ALJEBREEN M, ALOHALI M A, SAEED M K, et al. Binary Chimp Optimization Algorithm with ML Based Intrusion Detection for Secure IoT-Assisted Wireless Sensor Networks[J]. Sensors, 2023, 23(8):1-17.
ALMASLUKH B. Deep Learning and Entity Embedding-Based Intrusion Detection Model for Wireless Sensor Networks[J]. Computers,Materials & Continua, 2021, 69(1):1343-1360.
GOWDHAMAN V, DHANAPAL R. An Intrusion Detection System for Wireless Sensor Networks Using Deep Neural Network[J]. Soft Computing, 2021, 26(23):13059-13067.
LU X, HAN D Z, DUAN L T, et al. Intrusion Detection of Wireless Sensor Networks Based on IPSO Algorithm and BP Neural Network[J]. International Journal of Computational Science and Engineering, 2020, 22(2-3):221-232.
蔡玲如, 朱理, 黄瑞崧, 等. 基于强化学习的无线传感器网络入侵检测攻防博弈研究[J]. 计算机应用研究, 2022, 39(12):3786-3790.
CAI Lingru, ZHU Li, HUANG Ruisong, et al. Research on Attack-Defence Game Based on Reinforcement Learning for Wireless Sensor Network Intrusion Detection[J]. Application Research of Computers, 2022, 39(12):3786-3790.
KHOT P S, NAIK U, et al. Taylor CMVO:Taylor Competitive Multi-Verse Optimizer for Intrusion Detection and Cellular Automata-Based Secure Routing in WSN[J]. International Journal of Intelligent Robotics and Applications, 2022, 6(2):306-322.
ALMOMANI I, Al-KASASBEH B, AL-AKHRAS M. WSN-DS:A Dataset for Intrusion Detection Systems in WirelessSensor Networks[J]. Journal of Sensors, 2016,1:4731953.
LIPPMANN R, HAINES J W, FRIED D J, et al. The 1999 DARPA Off-Line Intrusion Detection Evaluation[J]. Computer Networks, 2000, 34(4):579-595.
TAVALLAEE M, BAGHERI E, LU W, et al. A Detailed Analysis of The KDD CUP 99 Data Set[C]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Piscataway:IEEE, 2009:1-6.
MOUSTAFA N, SLAY J. UNSW-NB15:A Comprehensive Data Set for Network Intrusion Detection Systems(UNSW-NB15 Network Data Set)[C]//2015 Military Communications and Information Systems Conference(MilCIS).Piscataway:IEEE, 2015: 1-6.
SHARAFALDIN I, HABIBI L A, GHORBANI A A. A Detailed Analysis of the CICIDS2017 Data Set[C]//Information Systems Security and Privacy:4th International Conference,ICISSP 2018.Heidelberg:Springer, 2019:172-188.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构