1. 西安电子科技大学 通信工程学院,陕西 西安 710071
2. 中煤能源研究院有限责任公司,陕西 西安 710000
[ "何慧萌(2000—),女,西安电子科技大学硕士研究生,E-mail:[email protected]; " ]
[ "杨 婷(1997—),女,西安电子科技大学博士研究生,E-mail:[email protected]; " ]
[ "施会丽(1998—),女,西安电子科技大学硕士研究生,E-mail:[email protected]; " ]
王 平(1977—),男,教授,博士,E-mail:[email protected]
[ "邴 喆(1976—),男,副总工程师,E-mail:[email protected] ; " ]
[ "王 星(1989—),女,工程师,E-mail:[email protected]; " ]
[ "白 勃(1985—),男,副教授,博士,E-mail:[email protected]" ]
纸质出版日期:2024-4-20,
网络出版日期:2024-1-31,
收稿日期:2023-12-7,
扫 描 看 全 文
何慧萌, 杨婷, 施会丽, 等. 考虑HPSA的IRS辅助室内VLC系统光源优化[J]. 西安电子科技大学学报, 2024,51(2):46-55.
Huimeng HE, Ting YANG, Huili SHI, et al. Optimization of light sources for the IRS-assisted indoor VLC system considering HPSA[J]. Journal of Xidian University, 2024,51(2):46-55.
何慧萌, 杨婷, 施会丽, 等. 考虑HPSA的IRS辅助室内VLC系统光源优化[J]. 西安电子科技大学学报, 2024,51(2):46-55. DOI: 10.19665/j.issn1001-2400.20240103.
Huimeng HE, Ting YANG, Huili SHI, et al. Optimization of light sources for the IRS-assisted indoor VLC system considering HPSA[J]. Journal of Xidian University, 2024,51(2):46-55. DOI: 10.19665/j.issn1001-2400.20240103.
针对可见光通信(VLC)系统中接收平面光功率分布不均匀的问题
提出了一种基于混合粒子群算法(HPSA)的智能反射面(IRS)辅助室内VLC系统光源优化设计方案。以16个发光二极管(LED)的矩形和混合型布局为例
设置接收光功率方差为适应度函数
将所提出的HPSA与IRS技术相结合
对LED的位置布局、半功率角以及IRS的偏航角与滚转角进行优化。仿真对比了初始的(未经优化)、基于HPSA优化的室内VLC系统
以及基于HPSA优化的IRS辅助VLC系统的性能。结果表明
在考虑一次反射链路的情况下
与初始的VLC系统相比
采用HPSA优化的系统在两种光源布局下的接收光功率以及信噪比波动都明显降低;基于HPSA优化的IRS辅助室内VLC系统在矩形布局下对接收光功率波动的改善与基于HPSA优化的VLC系统效果相当
其在混合型布局下明显低于仅采用HPSA优化的VLC系统的光功率波动。3种可见光通信系统中
基于HPSA优化的IRS辅助VLC系统的平均接收光功率最大。此外
上述3种VLC系统采用混合型布局的平均均方时延拓展性能均优于矩形布局。研究工作对室内可见光通信系统光源分布研究具有一定参考价值。
Aiming at the problem of unevenness of optical power distribution on the receiving plane in a visible light communication(VLC) system
a light source optimization method for an intelligent reflecting surface(IRS)-assisted indoor VLC system based on the hybrid particle swarm algorithm(HPSA) is proposed.Taking the two layout schemes of rectangular and hybrid arrangements with 16 light-emitting diodes(LEDs) as examples
the variance of received optical power on the receiving plane is set as the fitness function
and the proposed HPSA is combined with the IRS technology to optimize the half-power angle and positional layout of LEDs as well as the yaw and roll angles of IRS.Subsequently
initial(unoptimized) optimization using the HPSA
and optimization using the HPSA for the IRS-aided VLC systems are simulated and compared.The results indicate that when considering the first reflection link
compared to the original VLC system
the fluctuations of received optical power and signal-to-noise ratio of the VLC system optimized with the HPSA significantly decrease for both light source layouts;the HPSA optimized IRS-aided indoor VLC system improves the received optical power fluctuations in the rectangular layout as well as the HPSA optimized VLC system
and its performance is significantly better than that of the HPSA optimized VLC system only in the hybrid layout for optical power fluctuations improvement.Among the three VLC systems
the IRS-aided VLC system based on HPSA optimization has the largest average received optical power.Besides
the average root mean square delay spread performance of the above three VLC systems using a hybrid layout is better than that of a rectangular layout.This work will benefit the study of light source distribution in indoor VLC systems.
可见光通信系统发光二极管光源优化混合粒子群算法智能反射面接收光功率信噪比
visible light communicationlight emitting diodeslight source optimizationhybrid particle swarm algorithmintelligent reflecting surfacereceived optical powersignal to noise ratio
SUN S, YANG F, SONG J, et al. Optimization on Multiuser Physical Layer Security of Intelligent Reflecting Surface-Aided VLC[J]. IEEE Wireless Communications Letters, 2022, 11(7):1344-1348.
CHE H, WANG P, CHI S, et al. LED Layout Optimization in Visible Light Communication System by a Hybrid Immune Clonal Bat Algorithm[J]. Optics Communications, 2022,520:128532.
明振兴, 吕清花, 明月, 等. 基于改进粒子群算法的LED光源阵列优化[J]. 应用光学, 2022, 43(3):524-531. DOI:10.5768/JAO202243.0305003http://doi.org/10.5768/JAO202243.0305003
MING Zhenxing, LV Qinghua, MING Yue, et al. Optimization of LED Light Source Array Based on Improved Particle Swarm Algorithm[J]. Journal of Applied Optics, 2022, 43(3):524-531. DOI:10.5768/JAO202243.0305003http://doi.org/10.5768/JAO202243.0305003
SINGH A, SRIVASTAVA A, BOHARA V A. Optimum LED Semiangle and the Receiver FOV Selection for Indoor VLC System with Human Blockages[C]// Proceedings of the 95th IEEE Vehicular Technology Conference(VTC2022-Spring).Piscataway:IEEE, 2022:1-7.
LIU Z, YANG F, SUN S, et al. Sum Rate Maximization for NOMA-Based VLC with Optical Intelligent Reflecting Surface[J]. IEEE Wireless Communications Letters, 2023, 12(5):848-852.
LI W, HUANG C, GEORGE A, et al. Wireless Communications Empowered by Reconfigurable Intelligent Surfaces:Model-Based vs Model-Free Channel Estimation[J]. Journal of Information and Intelligence, 2023, 1(3):253-266.
SABER H, MUHAMMAD J, REHMAN U, et al. Rate Optimization Using Low Complex Methods with Reconfigurable Intelligent Surfaces[J]. Journal of Information and Intelligence, 2023, 1(3):267-280.
韩永康, 陈健, 周雨晨, 等. 面向多用户NOMA-IRS系统的公平性优化[J]. 西安电子科技大学学报, 2023, 50(2):1-10.
HAN Yongkang, CHEN Jian, ZHOU Yuchen, et al. Fairness Optimization for the Multi-User NOMA-IRS System[J]. Journal of Xidian University, 2023, 50(2):1-10.
ABOAGYE S, NGATCHED T M N, DOBRE O A, et al. Intelligent Reflecting Surface-Aided Indoor Visible Light Communication Systems[J]. IEEE Communications Letters, 2021, 25(12):3913-3917.
ABDELHADY A M, SALEM A K S, AMIN O, et al. Visible Light Communications via Intelligent Reflecting Surfaces:Metasurfaces vs Mirror Arrays[J]. IEEE Open Journal of the Communications Society, 2021,2:1-20.
ABDELHADY A M, AMIN O, SALEM A K S, et al. Channel Characterization of IRS-Based Visible Light Communication Systems[J]. IEEE Transactions on Communications, 2022, 70(3):1913-1926.
SUN S, WANG T, YANG F, et al. Intelligent Reflecting Surface-Aided Visible Light Communications:Potentials and Challenges[J]. IEEE Vehicular Technology Magazine, 2022, 17(1):47-56.
SANDALIDIS H G, VAVOULAS A, TSIFTSIS T A, et al. Illumination,Data Transmission,and Energy Harvesting:The Threefold Advantage of VLC[J]. Applied Optics, 2017, 56(12):3421-3427.
YANG T, WANG P, LI G, et al. Average Signal-to-Noise Ratio Maximization Forintelligent Reflecting Surface and Angle Diversity Receiver Jointly Assisted Indoor Visible Light Communication System[J]. Applied Optics, 2022, 61(35):10390-10399.
GUANG W, WU Y, XIE C, et al. High-Precision Approach to Localization Scheme of Visible Light Communication Based on Artificial Neural Networks and Modified Genetic Algorithms[J]. Optical Engineering, 2017, 56(10):106103.
YASIR M, HO S W, VELLAMBI B N. Indoor Positioning System Using Visible Light and Accelerometer[J]. Journal of Lightwave Technology, 2014, 32(19):3306-3316.
GHASSEMLOOY Z, POPOOLA W, RAJBHANDARI S. Optical Wireless Communications:System and Channel Modelling with MATLAB[M]. CRC Press,2012:1-576.
KOMINE T, NAKAGAWA M. Fundamental Analysis for Visible-light Communication System Using LED Lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(2):100-107.
BHARM, KUMAR S, SINGH A, et al. On the Optimal Evaluation of the Angle of Irradiance and the Orientation for an IRS-Aided Indoor VLC(2023)[J/OL].[2023-05-11].https://www.techrxiv.org/doi/full/10.36227/techrxiv.22787234.v1. https://www.techrxiv.org/doi/full/10.36227/techrxiv.22787234.v1https://www.techrxiv.org/doi/full/10.36227/techrxiv.22787234.v1
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构