1. 电子科技大学 通信抗干扰全国重点实验室,四川 成都 611731
2. 电磁空间认知与智能控制技术实验室,北京 100089
[ "陈 聪(1990—),男,电子科技大学博士研究生,E-mail:[email protected]" ]
[ "段柏宇(1996—),男,电子科技大学博士研究生,E-mail:[email protected]" ]
[ "潘文生(1975—),男,副研究员,E-mail:[email protected]" ]
[ "马万治(1977—),男,副研究员,E-mail:[email protected]" ]
[ "邵士海(1980—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-06-20,
网络出版日期:2024-01-31,
收稿日期:2023-06-10,
扫 描 看 全 文
陈聪, 段柏宇, 徐强, 等. 无人机平台运动状态下节点间高精度时间同步[J]. 西安电子科技大学学报, 2024,51(3):19-29.
Cong CHEN, Baiyu DUAN, Qiang XU, et al. High precision time synchronization between nodes under motion scenario of UAV platforms[J]. Journal of Xidian University, 2024,51(3):19-29.
陈聪, 段柏宇, 徐强, 等. 无人机平台运动状态下节点间高精度时间同步[J]. 西安电子科技大学学报, 2024,51(3):19-29. DOI: 10.19665/j.issn1001-2400.20231207.
Cong CHEN, Baiyu DUAN, Qiang XU, et al. High precision time synchronization between nodes under motion scenario of UAV platforms[J]. Journal of Xidian University, 2024,51(3):19-29. DOI: 10.19665/j.issn1001-2400.20231207.
节点间的时间同步是无人机集群资源调度、协同定位、数据融合的基础
在同步精度要求较高的场景中常用双向时间同步进行节点间的时间同步。然而无人机的相对运动会导致两次同步消息的传播时延不等
进而引起时间同步误差。针对该问题
首先从线性方程组求解角度分析了时间同步误差的产生原因
提出了一种利用双触发双向时间同步以增加方程个数、并在节点匀速运动前提下减少未知量个数的方法。然后推导了该方法下钟差的求解公式
结果表明钟差求解与节点的匀速运动速度无关。随后比较了在加性高斯白噪声信道中双触发式双向时间同步方法与现有运动补偿方法的钟差估计性能
并分析了时间戳处理时延和速度改变对钟差求解精度的影响。最后通过外场实验验证了双触发式双向时间同步的有效性。仿真及实验结果表明
相比于传统双向时间同步
双触发式双向时间同步不会因节点的匀速运动导致主从节点间的时间同步出现系统偏差。
Time synchronization is the foundation for transmission resource scheduling
cooperative localization and data fusion in UAV clusters.Two-way time synchronization is commonly used to synchronize time between nodes in scenarios with high synchronization accuracy requirements.However
the relative motion of the UAVs will cause the propagation delays of the two synchronization messages to be unequal
thereby causing time synchronization errors.To solve this problem
the causes of synchronization deviation are analyzed from the perspective of solving linear equations.A method is proposed to increase the number of equations by conducting two-way time synchronization twice
with the number of unknown quantities being reduced under the premise of the uniform motion of nodes.The solution formula for the clock deviation under uniform motion of nodes is derived
and the derivation results show that the clock deviation solution is independent of the speed of the nodes.Synchronization performance is compared with that of existing compensation methods under the additive Gaussian white noise channel.The effect of time stamp deviation and speed changing on the accuracy of the clock deviation solution is analyzed.Finally
the effectiveness of the dual-trigger two-way time synchronization is verified through field experiments.Simulation and experiment results show that
compared with conventional two-way time synchronization
the dual-trigger two-way time synchronization does not cause systematic deviations by the uniform motion of nodes.
无人机双向时间同步非对称传输时延线性方程组
unmanned aerial vehiclestwo-way time synchronizationasymmetric transmission delaylinear equations
王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4):023732.
WANG Xiangke, LIU Zhihong, CONG Yirui, et al. Miniature Fixed-Wing UAV Swarms:Review and Outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):023732.
徐子蒙, 王博文, 云霄, 等. 灾后无人机不确定偏好序下稳定中继选择方法[J]. 西安电子科技大学学报, 2022, 49(6):32-50.
XU Zimeng, WANG Bowen, YUN Xiao, et al. Stable Relay Selection Method under an Uncertain Preference Ordinal for UAV in Post-Disaster[J]. Journal of Xidian University, 2022, 49(6):32-50.
TRIANTAFYLLOU A, ZORBAS D, SARIGIANNIDIS P. Time-Slotted LoRa MAC with Variable Payload Support[J]. Computer Communications, 2022, 193:146-154.
WU J, LU H, XIANG Y, et al. SATMAC:Self-Adaptive TDMA-Based MAC Protocol for VANETs[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):21712-21728.
KO S W, CHEA H, HAN K, et al. V2X-Based Vehicular Positioning:Opportunities,Challenges,and Future Directions[J]. IEEE Wireless Communications, 2021, 28(2):144-151.
KABIRI M, CIMARELLI C, BAVLE H, et al. A Review of Radio Frequency Based Localisation for Aerial and Ground Robots with 5G Future Perspectives[J]. Sensors, 2023,23,188.
XUE C, LI T, LI Y. Radio Frequency Based Distributed System for Noncooperative UAV Classification and Positioning[J]. Journal of Information and Intelligence, 2024, 2(1):42-51.
DIMAKIS A G, KAR S, MOURA J M F, et al. Gossip Algorithms forDistributed Signal Processing[J]. Proceedings of the IEEE, 2010, 98(11):1847-1864.
BARRY J, WALSH J. A Review of Multi-Sensor Fusion System for Large Heavy Vehicles off Road in Industrial Environments[C]//2020 31st Irish Signals and Systems Conference(ISSC).Piscataway:IEEE, 2020:1-6.
SEIJO Ó, VAL I, LUVISOTTO M, et al. Clock Synchronization for Wireless Time-Sensitive Networking:A March from Microsecond to Nanosecond[J]. IEEE Industrial Electronics Magazine, 2021, 16(2):35-43.
MING Z, PANG H, XU Y, et al. Estimating Clock Skew with One-Way Timestamps[J]. IEEE Communications Letters, 2022, 26(11):2591-2595.
SEIJO Ó, LOPEZ-FERNANDEZ J A, BERNHARD H P, et al. Enhanced Timestamping Method for Subnanosecond Time Synchronization in IEEE 802.11 over WLAN Standard Conditions[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9):5792-5805.
PRAGER S, HAYNES M S, MOGHADDAM M. Wireless Subnanosecond RF Synchronization for Distributed Ultrawideband Software-Defined Radar Networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11):4787-4804.
MERLO J M, MGHABGHAB S R, NANZER J A. Wireless Picosecond Time Synchronization for Distributed Antenna Arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(4):1720-1731.
MILLS D, DELAWARE U, MARTIN J, et al. Network Time Protocol Version 4:Protocol and Algorithms Specification(2023)[S/OL].[2023-06-05].https://datatracker.ietf.org/doc/html/rfc5905https://datatracker.ietf.org/doc/html/rfc5905
IEEE. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems:IEEE Std 1588-2008[S]. New York: IEEE Standards Association, 2008.
SEOL Y, HYEON D, MIN J, et al. Timely Survey of Time-Sensitive Networking:Past and Future Directions[J]. IEEE Access, 2021, 9:142506-142527.
白燕, 卢晓春, 高天. 基于单点伪距归算的星间链路时间同步改进算法[J]. 武汉大学学报·信息科学版, 2021, 46(7):1044-1052.
BAI Yan, LU Xiaochun, GAO Tian. An Improved Algorithm for Inter-Satellite Link Time Synchronization Based on Single-Point Pseudo-Range Reduction[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7):1044-1052.
于雪晖, 王盾, 李周, 等. 双向比对高精度物理时间同步方法[J]. 航空学报, 2019, 40(5):203-217.
YU Xueui, WANG Dun, LI Zhou, et al. High Accuracy Physical Time Synchronization Method Based on Two-Way Comparison[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):203-217.
HUANG F, CHEN Y, LI T, et al. Analysis and Correction to the Influence of Satellite Motion on the Measurement of Inter-Satellite Two-Way Clock Offset[J]. EURASIP Journal on Wireless Communications and Networking, 2019, 2019(1):1-7.
ZHAO S, GUO N, ZHANG X P, et al. Sequential Doppler-Shift-Based Optimal Localization and Synchronization with TOA[J]. IEEE Internet of Things Journal, 2022, 9(17):16234-16246.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构