西安电子科技大学 雷达信号处理全国重点实验室,陕西 西安 710071
[ "刘敏提(1993—),女,西安电子科技大学博士研究生,E-mail:[email protected]" ]
曾 操(1979—),男,教授,E-mail:[email protected]
[ "胡树林(2000—),男,西安电子科技大学硕士研究生,E-mail:[email protected]" ]
[ "陈建忠(1984—),男,教授,E-mail:[email protected]" ]
[ "李 军(1972—),男,教授,E-mail:[email protected]" ]
[ "李世东(1968—),男,教授,E-mail:[email protected]" ]
[ "廖桂生(1963—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-06-20,
网络出版日期:2023-12-27,
收稿日期:2023-07-01,
扫 描 看 全 文
刘敏提, 曾操, 胡树林, 等. 存在幅相误差时二维稳健超分辨测角算法[J]. 西安电子科技大学学报, 2024,51(3):55-62.
Minti LIU, Cao ZENG, Shulin HU, et al. Algorithm for estimation of the two-dimensional robust super-resolution angle under amplitude and phases uncertainty background[J]. Journal of Xidian University, 2024,51(3):55-62.
刘敏提, 曾操, 胡树林, 等. 存在幅相误差时二维稳健超分辨测角算法[J]. 西安电子科技大学学报, 2024,51(3):55-62. DOI: 10.19665/j.issn1001-2400.20231201.
Minti LIU, Cao ZENG, Shulin HU, et al. Algorithm for estimation of the two-dimensional robust super-resolution angle under amplitude and phases uncertainty background[J]. Journal of Xidian University, 2024,51(3):55-62. DOI: 10.19665/j.issn1001-2400.20231201.
针对4D车载毫米波雷达在俯仰与方位维角度分辨力较低、阵列存在幅相误差时测角有偏的问题
提出一种基于快速稀疏贝叶斯学习的稳健二维超分辨测角方法。首先
利用空域稀疏性特点
对角度域空间进行栅格划分
构建了存在幅相误差时的二维超分辨测角信号模型;然后
通过固定点更新的MacKay SBL重构算法实现了多个邻近目标二维角度估计
并利用基于向量点乘的自校正算法对相位误差进行估计
以对有偏的角度估计进行修正;最后
给出了多输入多输出虚拟阵列下的二维角度估计的克拉美-罗界
并分析了所提算法的计算复杂度。仿真结果表明
在大陆ARS548雷达实际12发16收天线布局下
通过对比6种超分辨测角算法
所提方法在低信噪比、少量快拍下和幅相误差较小时
具有较高的角度分辨力与较低的均方根误差。
In order to address the issues of low angle resolution in elevation and azimuth dimensions of the 4D vehicle-mounted millimeter wave radar
as well as the biased angle measurement when the array includes amplitude and phase defects.A robust two-dimensional super-resolution angle estimation method based on fast sparse Bayesian Learning(FSBL) is suggested as a solution to this issue.First
a two-dimensional super-resolution angle signal model with amplitude and phase errors is built by using grids to split the angle domain space depending on spatial sparsity.Then
the two-dimensional angle estimation for spatial proximity targets is obtained using the fixed-point updated based MacKay SBL reconstruction algorithm
with the phase error and biased angle compensation calibrated using the self-correcting algorithm based on vector dot product.Finally
the computational complexity of the proposed algorithm is analyzed
and the Cramer-Rao Lower Bound(CRB) for two-dimensional angle estimation under MIMO non-uniform sparse arrays is provided.By comparing six distinct categories of super-resolution algorithms
simulation results demonstrate that the proposed method has a high angle resolution and a low root mean square error(RMSE) in a low SNR and few snapshot numbers under the actual layout of 12 transmitting and 16 receiving antennas for the continental ARS548 radar.
超分辨多输入多输出阵列毫米波雷达贝叶斯学习幅相误差
super-resolutionmultiple-input multiple-output(MIMO) arraymillimeter wave radarsparse Bayesian learningamplitude and phases error
LORD RAYLEIGH F R S. Investigations in Optics,with Special Reference to the Spectroscope[J]. Philosophical Magazing and Journal of Science, 1897, 8(49):261-274.
FU M, ZHENG Z, WANG W Q, et al. Virtual Array Interpolation for 2-D DOA and Polarization Estimation Using Coprime EMVS Array via Tensor Nuclear Norm Minimization[J]. IEEE Transactions on Signal Processing, 2023,71:3637-3650.
MA T, XIAO Y, LEI X. Channel Reconstruction-Aided MUSIC Algorithms for Joint AoA&AoD Estimation in MIMO Systems[J]. IEEE Wireless Communications Letters, 2023, 12(2):322-326.
刘帅琦, 王布宏, 李龙军, 等. 二维混合MIMO相控阵雷达的DOA估计算法[J]. 西安电子科技大学学报, 2017, 44(3):157-163.
LIU Shuaiqi, WANG Buhong, LI Longjun, et al. DOA Estimation Algorithm for Two-Dimensional Hybrid MIMO Phased Array Radar[J]. Journal of Xidian University, 2017, 44(3):157-163.
YANG Z. Nonasymptotic Performance Analysis of ESPRIT and Spatial-Smoothing ESPRIT[J]. IEEE Transactions on Information Theory, 2023, 69(1):666-681.
MAO Y, GUO Q, DING J, et al. Marginal Likelihood Maximization Based Fast Array Manifold Matrix Learning for Direction of Arrival Estimation[J]. IEEE Transactions on Signal Processing, 2021,69:5512-5522.
LEITE W S, LAMARE R C D. List-Based OMP and an Enhanced Model for DOA Estimation with Nonuniform Arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6):4457-4464.
WEN F, GUI G, GACANIN H, et al. Compressive Sampling Framework for 2D-DOA and Polarization Estimation in mmWave Polarized Massive MIMO Systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(5):3071-3083.
LIU A, SHI S, WANG X. Robust DOA Estimation Method for Underwater Acoustic Vector Sensor Array in Presence of Ambient Noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023,61:1-14.
王乐, 赵佩瑶, 王兰美, 等. 阵列误差下的近场源PCA-BP参数估计算法[J]. 西安电子科技大学学报, 2022, 49(1):181-187.
WANG Le, ZHAO Peiyao, WANG Lanmei, et al. Near Field Source PCA-BP Parameter Estimation Algorithm under Array Error[J]. Journal of Xidian University, 2022, 49(1):181-187.
LIU A, LIAO G, ZENG C, et al. An Eigenstructure Method for Estimating DOA and Sensor Gain-Phase Errors[J]. IEEE Transactions on Signal Processing, 2011, 59(12):5944-5956.
WYLIE M P, ROY S, SCHMITT R F. Self-Calibration of Linear Equispaced(LES) Arrays[C]// 1993 IEEE International Conference on Acoustics,Speech,and Signal Processing.Piscataway:IEEE,1993: 281-284.
LIU Z M, ZHOU Y Y. A Unified Framework and Sparse Bayesian Perspective for Direction-of-Arrival Estimation in the Presence of Array Imperfections[J]. IEEE Transactions on Signal Processing, 2013, 61(15):3786-3798.
HASHEMI A, CAI C, KUTYNIOK G, et al. Unification of Sparse Bayesian Learning Algorithms for Electromagnetic Brain Imaging with the Majorization Minimization Framework[J]. NeuroImage, 2021,239:118309.
LI J, ZHANG X. Closed-Form Blind 2D-DOD and 2D-DOA Estimation for MIMO Radar with Arbitrary Arrays[J]. Wireless Personal Communications, 2013,69:175-186.
WANG C, HU J, ZHANG Q, et al. An Efficient 2D DOA Estimation Algorithm Based on OMP for Rectangular Array[J]. Electronics, 2023, 12(7):1634.
COTTER S F, RAO B D, ENGAN K, et al. Sparse Solutions to Linear Inverse Problems with Multiple Measurement Vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7):2477-2488.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构