1. 澳大利亚国立大学 工程与计算机学院,堪培拉 2601
2. 北京卫星导航中心,北京 100083
3. 国防科技大学 电子对抗学院,安徽 合肥 230031
[ "张铂扬(1997—),男,澳大利亚国立大学硕士研究生,E-mail:[email protected];" ]
[ "褚怡(1985—),女,工程师,E-mail:[email protected];" ]
杨仲平(1996—),男,国防科技大学博士研究生,E-mail:[email protected]
[ "周青松(1983—),男,副教授,E-mail:[email protected]。" ]
扫 描 看 全 文
张铂扬, 褚怡, 杨仲平, 等. 用于精确干扰波形设计的高效流形算法[J]. 西安电子科技大学学报, 2023,50(6):84-92.
张铂扬, 褚怡, 杨仲平, 等. 用于精确干扰波形设计的高效流形算法[J]. 西安电子科技大学学报, 2023,50(6):84-92. DOI: 10.19665/j.issn1001-2400.20231001.
精确干扰是电子战领域的新概念。其核心思想是将搭载干扰机的无人机蜂群作为超稀疏阵列并发射干扰波形,从而在空域上对敌方设备精准地实施压制式干扰,并确保友方设备不受影响,但现有精确干扰波形设计方法仅能适应特定场景,且计算效率有待提升。为此,提出一种基于复圆流形优化的高效流形设计算法,以提高计算效率,并根据实际需求控制目标和友方区域内干扰能量分布。首先根据精确干扰空间模型和干扰能量在空域内分布的最坏情况建立一个恒模约束下的多目标优化问题。接下来采用L,p,范数对极大极小的优化目标进行光滑化近似处理。最后从黎曼几何的角度入手,将恒模约束多目标问题视为复圆流形下的无约束问题,并采用黎曼共轭梯度算法对问题进行高效求解。仿真结果表明,提出的算法通过调整正则化参数可以实现不同区域内的能量控制,从而适应不同场景及任务的精确干扰需求;且较现有算法具有更低的计算复杂度,能够有效提高精确干扰波形设计的计算效率。
Precision jamming is a new concept in the field of electronic warfare.The core idea is to adopt a group of drone swarms equipped with jammers as ultra-sparse arrays to transmit the jamming waveform,which aims to implement blanket jamming to the opponent equipment in the spatial domain precisely and ensures that the friendly equipment is not being affected.However,the existing methods apply only to some specific scenarios,and they need to be improved in computational efficiency.In this case,this paper proposes an efficient waveform design algorithm based on the complex circle manifold to improve the computational efficiency,which can control the energy level in the target and friendly regions according to the practical requirement.First,we establish a novel multi-objective optimization problem(MOP) with unimodular constraints according to the precision jamming geometric model and the worst case of jamming energy distribution in the spatial domain.Then,we adopt the L,p,-norm to smooth and approximate the minimax objective function.Finally,the MOP with unimodular constraints is viewed as an unconstrainted problem under the complex circle manifold from the perspective of the Riemann geometry,with the Riemannian Conjugate Gradient(RCG) algorithm employed to solve the problem efficiently.Simulation results are provided to demonstrate that the proposed algorithm can control the energy level in different regions by adjusting the regularization parameter,which meets the requirement of different scenarios and tasks of precision jamming.Moreover,it has a lower computational complexity and improves the computational efficiency for the precision jamming waveform design as compared to the existing methods.
精确干扰波形设计复圆流形多目标优化
precision jammingwaveform designcomplex circle manifoldmulti-objective optimization
张逸楠, 王广学, 彭世蕤, 等. 基于无人机集群的近场线性稀疏阵列波束形成研究[J]. 电子与信息学报, 2023, 45(1):181-190.
ZHANG Yinan, WANG Guangxue, PENG Shirui, et al. Beamforming Research for Near-Field Linear Sparse Array Based on Unmanned Aerial Vehicle Swarm[J]. Journal of Electronics & Information Technology, 2023, 45(1):181-190.
李奕蓉, 胡捍英. 一种低旁瓣方向图修正的MIMO雷达波形设计方法[J]. 西安电子科技大学学报, 2016, 43(2):132-138.
LI Yirong, HU Hanying. MIMO Radar Waveform Design Method via Low Sidelobe Beampattern Modification[J]. Journal of Xidian University, 2016, 43(2):132-138.
李中捷, 高伟, 熊吉源, 等. 采用DDPG的联合波束成形和功率控制算法[J]. 西安电子科技大学学报, 2022, 49(4):39-48.
LI Zhongjie, GAO Wei, XIONG Jiyuan, et al. DDPG Method for Joint Beamforming and Power Control in Mmwave Communication[J]. Journal of Xidian University, 2022, 49(4):39-48.
YANG Z, ZHANG B, ZHANG K, et al. Efficient Waveform Design with Jamming Characteristics for Precision Electronic Warfare[J]. Signal Processing, 2023, 212:109162. DOI:10.1016/j.sigpro.2023.109162http://doi.org/10.1016/j.sigpro.2023.109162https://linkinghub.elsevier.com/retrieve/pii/S0165168423002360https://linkinghub.elsevier.com/retrieve/pii/S0165168423002360
徐莎莎, 周芳, 李杨剑, 等. 一种新的传感器节点分布式定位算法[J]. 西安电子科技大学学报, 2022, 49(2):89-96.
XU Shasha, ZHOU Fang, LI Yangjian, et al. New Distributed Positioning Algorithm for Sensor Nodes[J]. Journal of Xidian University, 2022, 49(2):89-96.
ZHANG K, ZHOU Q, WANG J, et al. A Method for Jamming Waveform Design in Precision Electronic Warfare Scenarios[J]. IET Signal Processing, 2022, 16(5):562-574. DOI:10.1049/sil2.v16.5http://doi.org/10.1049/sil2.v16.5https://onlinelibrary.wiley.com/toc/17519683/16/5https://onlinelibrary.wiley.com/toc/17519683/16/5
Strategic Technology Office. Electronic Warfare(PREW):DARPA-BAA 09-65[EB]. United States of America:US Defense Advanced Research Projects Agency, 2009.
蒋盘林. 精准电子战技术发展初探[J]. 通信对抗, 2010, 112(4):3-6.
JIANG Panlin. Study of Development of Precision EW Technologies[J]. Communication Countermeasures, 2010, 112(4):3-6.
SONG D, WANG W, XU Z H, et al. Focused Energy Delivery with Protection for Precision Electronic Warfare[J]. IEEE Transactions on Aerospace Electronic System, 2016, 52(6):3053-3064. DOI:10.1109/TAES.2016.150713http://doi.org/10.1109/TAES.2016.150713http://ieeexplore.ieee.org/document/7855604/http://ieeexplore.ieee.org/document/7855604/
XU Y, HUANG C, ZHANG K, et al. A Fast Jamming Waveform Design Method Based on Distributed Precision Jamming[C]// 2022 2nd International Conference on Computer Science,Electronic Information Engineering and Intelligent Control Technology(CEI).Piscataway:IEEE, 2022:94-98.
CHEN S, XU C, ZHANG J. Efficient Focused Energy Delivery with Grating Lobe Mitigation for Precision Electronic Warfare[J]. Signal Processing, 2020, 169:107409. DOI:10.1016/j.sigpro.2019.107409http://doi.org/10.1016/j.sigpro.2019.107409https://linkinghub.elsevier.com/retrieve/pii/S016516841930461Xhttps://linkinghub.elsevier.com/retrieve/pii/S016516841930461X
YANG Z, ZHANG J, LI Z, et al. Focused Energy Delivery with Low Grating Lobes for Precision Electronic Warfare via BCD Framework[J]. Electronics Letters, 2021, 57(17):672-674. DOI:10.1049/ell2.v57.17http://doi.org/10.1049/ell2.v57.17https://onlinelibrary.wiley.com/toc/1350911x/57/17https://onlinelibrary.wiley.com/toc/1350911x/57/17
杨仲平, 周青松, 张剑云. 区域能量聚焦技术中超稀疏阵列优化算法[J]. 西安电子科技大学学报, 2021, 48(4):57-63.
YANG Zhongping, ZHOU Qingsong, ZHANG Jianyun. Optimization Algorithm for Ultra-Sparse Arrays in Regional Energy Focusing[J]. Journal of Xidian University, 2021, 48(4):57-63.
LI J. MIMO Radar Signal Processing[M]. New Jersey: John Wiley & Sons, 2009.41-47.
王洪雁, 乔恵娇, 裴炳南. MIMO雷达空时编码和接收权联合稳健设计[J]. 西安电子科技大学学报, 2019, 46(2):69-77.
WANG Hongyan, QIAO Huijiao, PEI Bingnan. Joint Robust Design of the Space-Time Code and Receive Filter for Multiple-Input Multiple-Output Radar[J]. Journal of Xidian University, 2019, 46(2):69-77.
肖刚, 刘三阳, 尹小艳. 微分流形上的最优化算法[J]. 西安电子科技大学学报, 2007, 34(3):472-475.
XIAO Gang, LIU Sanyang, YIN Xiaoyan. Optimization Algorithms on Differentiable Manifolds[J]. Journal of Xidian University, 2007, 34(3):472-475.
ABSIL P A, MAHONY R, SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton: Princeton University Press, 2009.
HU J, ZHANG W, ZHU H, et al. Constant Modulus Waveform Design for MIMO Radar via Manifold Optimization[J]. Signal Processing, 2022, 190:108322. DOI:10.1016/j.sigpro.2021.108322http://doi.org/10.1016/j.sigpro.2021.108322https://linkinghub.elsevier.com/retrieve/pii/S0165168421003595https://linkinghub.elsevier.com/retrieve/pii/S0165168421003595
SONG J, BABU P, PALOMAR D P. Sequence Design to Minimize the Weighted Integrated and Peak Sidelobe Levels[J]. IEEE Transactions on Signal Processing, 2016, 64(8):2051-2064. DOI:10.1109/TSP.2015.2510982http://doi.org/10.1109/TSP.2015.2510982http://ieeexplore.ieee.org/document/7362231/http://ieeexplore.ieee.org/document/7362231/
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构