1. 西安电子科技大学 电子工程学院,陕西 西安 710071
2. 陕西省超大规模电磁计算重点实验室,陕西 西安 710071
[ "丁 宁(1995—),男,西安电子科技大学博士研究生,E-mail:[email protected]" ]
[ "侯 鹏(1995—),男,西安电子科技大学博士研究生,E-mail:[email protected]" ]
赵勋旺(1983—),男,教授,E-mail:[email protected]
[ "林中朝(1988—),男,副教授,E-mail:[email protected]" ]
[ "张 玉(1978—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-06-20,
网络出版日期:2023-10-12,
收稿日期:2023-06-22,
扫 描 看 全 文
丁宁, 侯鹏, 赵勋旺, 等. 矩量法的一般波端口电磁建模方法[J]. 西安电子科技大学学报, 2024,51(3):38-45.
Ning DING, Peng HOU, Xunwang ZHAO, et al. Electromagnetic modeling of general waveports with the method of moments[J]. Journal of Xidian University, 2024,51(3):38-45.
丁宁, 侯鹏, 赵勋旺, 等. 矩量法的一般波端口电磁建模方法[J]. 西安电子科技大学学报, 2024,51(3):38-45. DOI: 10.19665/j.issn1001-2400.20230908.
Ning DING, Peng HOU, Xunwang ZHAO, et al. Electromagnetic modeling of general waveports with the method of moments[J]. Journal of Xidian University, 2024,51(3):38-45. DOI: 10.19665/j.issn1001-2400.20230908.
针对矩量法中非规则截面波端口的电磁建模问题
提出了一种基于高阶基函数矩量法的一般波端口建模方法。基于等效原理和模式匹配法建立了波端口表面积分方程
并利用二维有限元法对非规则波端口的模式进行高精度数值分析
将矩量法的规则波端口模型拓展为可用于规则及非规则波端口建模的一般波端口模型。在此基础上
使用定义于双线性曲面四边形单元的高阶基函数取代传统低阶基函数
减少了矩量法矩阵的未知量
显著降低了算法的内存需求和计算时间。通过数值算例对方法进行测试
与有限元法的数值结果进行对比
验证了方法的正确性;与低阶矩量法的数值结果对比
验证了方法的高效性。结果表明
该方法进行一般波端口模型建模仿真具有高效率和高数值精度的特点。
For the problems of electromagnetic modeling of waveports with irregular cross-sections by the integral equation method
a general waveport modeling method based on the higher-order method of moments is proposed.We establish the waveport surface integral equations based on the equivalence principle and the mode matching(MM) method.Additionally
we utilize the two-dimensional finite element method(2-D FEM) to accurately analyze the modes of irregular waveports
thereby extending the modeling capability of the MoM from the regular waveport model to a general waveport model suitable for both regular and irregular waveports modeling
on the basis of which the adoption of the higher-order basis functions defined on quadrilateral elements instead of lower-order basis functions reduces the unknown of the MoM
thus significantly reducing the memory requirements and computation time.The proposed method is tested through numerical examples
and the comparison of the tested results with the numerical results of the FEM verifies the correctness of the proposed method
and the comparison with RWG-MoM verifies the efficiency.Numerical results show that the proposed method has the advantages of high efficiency and high numerical accuracy for the general waveport modeling.
矩量法模式匹配法特征值非规则截面波端口
method of moments(MoM)mode matching(MM)eigenvalueirregular cross-sectionswaveport
HARRINGTON R F. Field Computation by Moment Methods[M]. New York: Wiley-IEEE Press,1993.
BUNGER R, ARNDT F. Moment-Method Analysis of Arbitrary 3-D Metallic N-Port Waveguide Structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(4):531-537.
RAZMHOSSEINI M, ZABIHI R, VAUGHAN R G. Wideband Antennas Using Coaxial Waveguide[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10):6273-6283.
GRAGLIA R D, PETRINI P, PETERSON A F, et al. Full-Wave Analysis of Inhomogeneous Waveguiding Structures Containing Corners with Singular Hierarchical Curl-Conforming Vector Bases[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13:1701-1704.
王永, 畅青, 张玉, 等. 波端口理论在波导缝隙天线计算中的应用[J]. 微波学报, 2014, 30(S1):1-14.
WANG Yong, CHANG Qing, ZHANG Yu, et al. Application of Port Theory in Analysis of Slotted Waveguide Antenna Array[J]. Journal of Microwaves, 2014, 30(S1):1-14.
SARKAR T K, ZHANG Y, ZHAO X W, et al. Higher Order Basis Based Integral Equation Solver(HOBBIES)[M]. Hoboken:Wiley, 2012.
张玉, 赵勋旺, 林中朝, 等. 计算电磁学中的超大规模并行矩量法[M]. 西安: 西安电子科技大学出版社, 2016.
WANG Y, ZHAO X W, ZHANG Y, et al. Higher Order MoM Analysis of Traveling-Wave Waveguide Antennas with Matched Waveports[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8):3718-3721.
LIN Z C, ZHANG Y, ZHAO X W, et al. Higher Order Method of Moments Analysis of Metallic Waveguides Loaded with Composite Metallic and Dielectric Structures[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(9):4958-4963.
GRAGLIA R D, PETRINI P, PETERSON A F, et al. Full-Wave Analysis of Inhomogeneous Waveguiding Structures Containing Corners with Singular Hierarchical Curl-Conforming Vector Bases[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13:1701-1704.
ZHANG K D, WANG C F, JIN J M. Broadband Monostatic RCS and ISAR Computation of large and Deep Open Cavities[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(8):4180-4193.
WANG S J, LIU J, LIU Q H. Mixed Nitsche’s Method for Maxwell’s Eigenvalue Problems[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1):286-298.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构