1. 天津城建大学 计算机与信息工程学院,天津 300384
2. 周口师范学院 网络工程学院,河南 周口 466001
[ "朱思峰(1975—),男,教授,E-mail:[email protected]" ]
宋兆威(1999—),男,天津城建大学硕士研究生,E-mail:[email protected]
[ "陈 昊(1982—),男,副教授,E-mail:[email protected]" ]
[ "朱 海(1978—),男,教授,E-mail:[email protected]" ]
[ "乔 蕊(1982—),女,副教授,E-mail:[email protected]" ]
纸质出版日期:2024-06-20,
网络出版日期:2023-09-21,
收稿日期:2023-04-21,
扫 描 看 全 文
朱思峰, 宋兆威, 陈昊, 等. 智慧交通场景下云边端协同的多目标优化卸载决策[J]. 西安电子科技大学学报, 2024,51(3):63-75.
Sifeng ZHU, Zhaowei SONG, Hao CHEN, et al. Multi-objective optimization offloading decision with cloud-side-end collaboration in smart transportation scenarios[J]. Journal of Xidian University, 2024,51(3):63-75.
朱思峰, 宋兆威, 陈昊, 等. 智慧交通场景下云边端协同的多目标优化卸载决策[J]. 西安电子科技大学学报, 2024,51(3):63-75. DOI: 10.19665/j.issn1001-2400.20230802.
Sifeng ZHU, Zhaowei SONG, Hao CHEN, et al. Multi-objective optimization offloading decision with cloud-side-end collaboration in smart transportation scenarios[J]. Journal of Xidian University, 2024,51(3):63-75. DOI: 10.19665/j.issn1001-2400.20230802.
随着智慧交通、云计算网络以及边缘计算网络的快速发展
车载终端与路基单元、中心云服务器之间的信息交互变得越发频繁。针对智慧交通云边端协同计算场景下如何高效地实现车路云一体化融合感知、群体决策以及各级服务器间对资源的合理分配问题
设计了基于云边端与智慧交通全面融合的网络架构。在该架构下
通过对任务类型的合理划分
再由各服务器对其进行选择性的缓存、卸载;在智慧交通云边端协同计算场景下
依次设计了一种对任务自适应的缓存模型、任务卸载时延模型、系统能量损耗模型、车载用户对服务质量不满意度评价模型、多目标优化问题模型
并给出了一种基于改进型非支配遗传算法的任务卸载决策方案。实验结果表明
文中方案能够有效降低任务卸载过程中所带来的时延和能耗
提高了系统资源利用率
给车辆用户带来更好的服务体验。
With the rapid development of intelligent transportation
the cloud computing network and the edge computing network
the information interaction among vehicle terminal
road base unit and central cloud server becomes more and more frequent.In view of how to efficiently realize vehicle-road-cloud integration fusion sensing
group decision making and reasonable allocation of re-sources between each server and the servers under the cloud-edge-terminal collaborative computing scenario of intelligent transportation
a network architecture based on the comprehensive convergence of the cloud-edge-terminal and intelligent transportation is designed.A network architecture based on the comprehensive integration of cloud-side-end and intelligent transportation is designed.Under this architecture
by reasonably dividing the task types
each server selectively caches and offloads them;under the collaborative computing scenario of the cloud-side-end of intelligent transportation
an adaptive caching model for tasks
a task offloading delay model
a system energy loss model
a model for evaluating the dissatisfaction of in-vehicle users with the quality of service
and a model for the multi-objective optimization problem are designed in turn
and a multi-objective optimization task offloading decision-making scheme is given based on the improved non-dominated genetic algorithms.Experimental results show that the proposed scheme can effectively reduce the delay and energy consumption brought by the task offloading process
improve the utilization rate of system resources
and bring better service experience to the vehicle user.
智慧交通云边端协同计算卸载决策多目标优化算法非支配遗传算法
smart transportationcloud edge collaborative computingoffloading decisionmulti-objective optimization algorithmnon-dominated select genetic algorithms Ⅱ(NSGA-Ⅱ) algorithm
SUN Y, HU Y, ZHANG H, et al. A Parallel Emission Regulatory Framework for Intelligent Transportation Systems and Smart Cities[J]. IEEE Transactions on Intelligent Vehicles, 2023, 2(8):1017-1020.
ZHU F, LV Y, CHEN Y, et al. Parallel Transportation Systems:Toward IoT-Enabled Smart Urban Traffic Control and Management[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 10(21):4063-4071.
MAO S, WU J S, LIU L, et al. Energy-Efficient Cooperative Communication and Computation for Wireless Powered Mobile-Edge Computing[J]. IEEE Systems Journal, 2022, 16(1):28-41.
CHEN C, LIU B, WANG S, et al. An Edge Traffic Flow Detection Scheme Based on Deep Learning in an Intelligent Transportation System[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 3(22):1840-1852.
XU X, ZHANG X, LIU X, et al. Adaptive Computation Offloading with Edge for 5G-Envisioned Internet of Connected Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8):5213-5222.
LIANG S. Edge YOLO:Real-Time Intelligent Object Detection System Based on Edge-Cloud Cooperation in Autonomous Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 12(23):25345-25360.
QIAO G, LENG S, MAHARJAN S, et al. Deep Reinforcement Learning for Cooperative Content Caching in Vehicular Edge Computing and Networks[J]. IEEE Internet of Things Journal, 2020, 1(7):247-257.
朱思峰, 蔡江昊, 柴争义, 等. 车联网云边协同计算场景下的多目标优化卸载决策[J]. 通信学报, 2022, 43(6):223-234. DOI:10.11959/j.issn.1000-436x.2022114http://doi.org/10.11959/j.issn.1000-436x.2022114
ZHU Sifeng, CAI Jianghao, CHAI Zhengyi, et al. Multi-Objective Optimal Offloading Decision under Cloud-Side Cooperative Computing Scenario for Vehicular Networking[J]. Journal on Communications, 2022, 43(6):223-234. DOI:10.11959/j.issn.1000-436x.2022114http://doi.org/10.11959/j.issn.1000-436x.2022114
ZHAO J, LI Q, GONG Y, et al. Computation Offloading and Resource Allocation for Cloud Assisted Mobile Edge Computing in Vehicular Networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8):7944-7956.
POL P S, PACHGHARE V K. Quality of Service Estimation Enabled with Trust-Based Resource Allocation in Collaborative Cloud Using Improved Grey Wolf Optimization[J]. The Computer Journal, 2022, 65(12):3209-3222.
马璐, 刘铭, 李超, 等. 面向6G边缘网络的云边协同计算任务调度算法[J]. 北京邮电大学学报, 2020, 43(6):66-73. DOI:10.13190/j.jbupt.2020-161http://doi.org/10.13190/j.jbupt.2020-161
MA Lu, LIU Ming, LI Chao, et al. Task Scheduling Algorithm of Cloud Edge Collaborative Computing for 6G Edge Networks[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(6):66-73. DOI:10.13190/j.jbupt.2020-161http://doi.org/10.13190/j.jbupt.2020-161
WU H, ZHANG Z, GUAN C, et al. Collaborate Edge and Cloud Computing with Distributed Deep Learning for Smart City Internet of Things[J]. IEEE Internet of Things Journal, 2020, 7(9):8099-8110.
赵辉, 冯南之, 王泉, 等. 面向边缘计算平台的半线上任务动态调度方法[J]. 西安电子科技大学学报, 2021, 48(6):8-15.
ZHAO Hui, FENG Nanzhi, WANG Quan, et al. A Dynamic Scheduling Method for Semi-Online Tasks for Edge Computing Platform[J]. Journal of Xidian University, 2021, 48(6):8-15.
朱思峰, 孙恩林, 柴争义. 移动边缘计算场景下基于免疫优化的任务卸载[J]. 西安电子科技大学学报, 2022, 49(1):152-160.
ZHU Sifeng, SUN Enlin, CHAI Zhengyi. Immuno Optimization Based Task Offloading in Mobile Edge Computing Scenarios[J]. Journal of Xidian University, 2022, 49(1):152-160.
LUO Q, LI C, LUAN T, et al. Minimizing the Delay and Cost of Computation Offloading for Vehicular Edge Computing[J]. IEEE Transactions on Services Computing, 2022, 15(5):2897-2909.
XIAO Z, SHU J, JIANG H, et al. Perception Task Offloading with Collaborative Computation for Autonomous Driving[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(2):457-473.
QU G, WU H, LI R, et al. DMRO:A Deep Meta Reinforcement Learning-Based Task Offloading Framework for Edge-Cloud Computing[J]. IEEE Transactions on Network and Service Management, 2021, 18(3):3448-3459.
DEB K, PRATAP A, AGARWAl S, et al. A Fast and Elitist Multi-Objective Genetic Algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
ALIOUI Y, RESAT A. An Evaluation of a Constrained Multi-Objective Genetic Algorithm[J]. Journal of Scientific Perspectives, 2020, 4(2):137-146.
LIANG X, CHEN J, GU X, et al. Improved Adaptive Non-Dominated Sorting Genetic Algorithm with Elite Strategy for Solving Multi-Objective Flexible Job-Shop Scheduling Problem[J]. IEEE Access, 2021, 38(9):106352-106362.
MA X, LI X, ZHANG Q, et al. A Survey on Cooperative Co-Evolutionary Algorithms[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(3):421-441.
SONG F, XING H, LUO S, et al. A Multi-Objective Computation Offloading Algorithm for Mobile-Edge Computing[J]. IEEE Internet of Things Journal, 2020, 9(7):8780-8799.
0
浏览量
8
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构