1. 西安电子科技大学 电子工程学院,陕西 西安 710071
2. 中国电子科技集团公司第二十九研究所 电子信息控制重点实验室,四川 成都 610036
[ "刘高高(1983—),男,副教授,E-mail:[email protected];" ]
黄东杰(1997—),男,西安电子科技大学硕士研究生,E-mail:[email protected]
[ "席昕(1998—),女,西安电子科技大学硕士研究生,E-mail:[email protected];" ]
[ "李昊(1979—),男,高级工程师,E-mail:[email protected];" ]
[ "曹旭源(1987—),男,高级工程师,E-mail:[email protected]。" ]
扫 描 看 全 文
刘高高, 黄东杰, 席昕, 等. 一种特征融合的工作模式识别方法[J]. 西安电子科技大学学报, 2023,50(6):13-20.
刘高高, 黄东杰, 席昕, 等. 一种特征融合的工作模式识别方法[J]. 西安电子科技大学学报, 2023,50(6):13-20. DOI: 10.19665/j.issn1001-2400.20230705.
工作模式识别是通过对信号的处理分析来确定雷达功能和行为状态的,是情报侦察、电子对抗领域的重要手段之一。随着现代机载雷达功能的多样化,其对应的信号样式也变得越来越复杂,而且日益复杂的侦察环境也导致侦察信号的质量参差不齐,这些都给传统的工作模式识别方法带来了巨大的困难。针对这一问题,在现有工作模式识别方法的基础上,提出了一种参数特征识别与D-S证据理论识别相融合的工作模式识别方法。首先,对于各侦察机处理得到的辐射源特征信号,利用特征参数识别算法快速得到工作模式信息,并结合D-S证据理论对识别结果加以验证。其次,对于单平台无法识别的信号,采用D-S证据理论融合识别的方法来完成工作模式的判别。从理论分析可以得出,该识别算法具有运算速度快,结构简单等优点,且新的融合识别方法可以提高工作模式的识别精度。最后,仿真验证了此方法的可行性。
Operational pattern recognition is one of the important means in the field of intelligence reconnaissance and electronic countermeasures,which is to determine the function and behavior of radar through signal processing and analysis.With the diversification of modern airborne radar functions,the corresponding signal styles are becoming more and more complex,and the increasingly complex reconnaissance environment also leads to the uneven quality of reconnaissance signals,which brings about great difficulties to the traditional operational pattern recognition methods.To solve this problem,based on the existing work pattern recognition methods,a new work pattern recognition method is proposed,which integrates parameter feature recognition and D-S evidence theory recognition.First,for the radiation source characteristic signals processed by each reconnaissance plane,the feature parameter recognition algorithm is used to quickly obtain the working mode information,and the recognition results are verified by the D-S evidence theory.Second,for the signal that can not be recognized by a single platform,the method of D-S evidence theory fusion recognition is used to distinguish the working mode.From the theoretical analysis,it can be concluded that the algorithm has the advantages of fast operation speed and simple structure,and that the new fusion recognition method can improve the recognition accuracy of the working mode.Finally,the feasibility of the method is verified by simulation.
机载雷达特征参数D-S证据理论模式识别
airborne radarcharacteristic parametersD-S evidence theorymode recognition
马小梦, 高梅国, 于默涵, 等. 智能对抗无人机的干扰组合序列生成算法研究(2023)[J/OL]. 西安电子科技大学学报.[2023-10-24]. https://doi.org/10.19665/j.issn1001-2400.20230903https://doi.org/10.19665/j.issn1001-2400.20230903https://doi.org/10.19665/j.issn1001-2400.20230903.
庞春逸. 机载雷达辐射源和工作模式识别[D]. 西安: 西安电子科技大学, 2022.
蔺诚毅, 徐伟. 基于无源侦察幅度的相控阵雷达工作模式仿真[J]. 电子技术与软件工程, 2021, 3:101-102.
LIN Chengyi, XU Wei. Simulation of Operation Mode of Phased Array Radar Based on Passive Reconnaissance Amplitude[J]. Electronic Technology and Software Engineering, 2021, 3:101-102.
翟龙军, 但波, 宋伟健, 等. 基于聚类分析方法的多功能雷达工作模式识别[J]. 舰船电子工程, 2022, 42(4):86-88.
ZHAI Longjun, DAN Bo, SONG Weijian, et al. Multi-Function Radar Operating Pattern Recognition Based on Cluster Analysis[J]. Ship Electronic Engineering, 2022, 42(4):86-88.
罗健, 仇洪冰, 周陬, 等. 基于SOM聚类平滑图信号生成的MFR工作模式识别方法[J]. 桂林电子科技大学学报, 2023, 43(2):120-127.
LUO Jian, QIU Hongbing, ZHOU Chou, et al. MFR Working Pattern Recognition Method Based on SOM Cluster Smooth Graph Signal Generation[J]. Journal of Guilin University of Electronic Technology of China, 2023, 43(2):120-127.
利强, 张伟, 金秋园, 等. 基于知识原型网络的小样本多功能雷达工作模式识别[J]. 电子学报, 2022, 50(6):1344- 1350. DOI:10.12263/DZXB.20210932http://doi.org/10.12263/DZXB.20210932
LI Qiang, ZHANG Wei, JIN Qiuyuan, et al. Small Sample Multi-Function Radar Mode Recognition Based on Knowledge Prototype Network[J]. Acta Electronica Sinica, 2022, 50(6):1344-1350. DOI:10.12263/DZXB.20210932http://doi.org/10.12263/DZXB.20210932
刘俊江. 机载火控雷达工作模式识别[J]. 电子测量技术, 2016, 39(2):131-133.
LIU Junjiang. Working Pattern Recognition of Airborne Fire Control Radar[J]. Electronic Measurement Technology, 2016, 39(2):131-133.
ZHANG Y, ZHANG C, HUO W, et al. Operation Mode Recognition of Airborne Radar Based on Multi-Feature Fusion RS-ConvNet[C]// IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.Piscataway:IEEE, 2022:2686-2689.
WANG W, WANG Y. A Parameter-Optimized SLS-TSVM Method for Working Modes Recognition of Airborne Fire Control Radar[C]// 2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC).Piscataway:IEEE, 2020:948-953.
王玉冰, 程嗣怡, 周一鹏, 等. 基于DS证据理论的机载火控雷达空空工作模式判定[J]. 现代雷达, 2017, 39(5):79-84.
WANG Yubing, CHENG Siyi, ZHOU Yipeng, et al. Air-to-Air Operating Mode Determination of Airborne Fire Control Radar Based on DS Evidence Theory[J]. Modern Radar, 2017, 39(5):79-84.
王星, 王志鹏, 呙鹏程, 等. 应用D-S证据理论的雷达工作模式特征层融合识别[J]. 空军工程大学学报(自然科学版), 2016, 17(4):35-40.
WANG Xing, WANG Zhipeng, GUO Pengcheng, et al. Radar Operating Mode Feature Layer Fusion Recognition Using D-S Evidence Theory[J]. Journal of Air Force Engineering University(Natural Science Edition), 2016, 17(4):35-40.
李楠, 曲长文, 平殿发, 等. 基于分布式传感器信息融合的辐射源识别[J]. 控制与决策, 2010, 25(12):1793-1798.
LI Nan, QU Changwen, PING Dianfa, et al. Radiation Source Identification Based on Distributed Sensor Information Fusion[J]. Control and Decision, 2010, 25(12):1793-1798.
朱大奇, 于盛林. 基于D-S证据理论的数据融合算法及其在电路故障诊断中的应用[J]. 电子学报, 2002, 30(2):221-223.
ZHU Daqi, YU Shenglin. Data Fusion Algorithm Based on D-S Evidence Theory and Its Application in Circuit Fault Diagnosis[J]. Acta Electrica Sinica, 2002, 30(2):221-223.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构