1. 西安电子科技大学 通信工程学院,陕西 西安 710071
2. 电磁空间认知与智能控制技术实验室,北京 100191
[ "张涵硕(1994—),男,西安电子科技大学博士研究生,E-mail:[email protected]; " ]
李 涛(1989—),男,讲师,E-mail:[email protected]
[ "李勇朝(1974—),男,教授,E-mail:[email protected]; " ]
[ "温志津(1971—),男,正高级工程师,E-mail:[email protected]" ]
纸质出版日期:2024-4-20,
网络出版日期:2023-9-14,
收稿日期:2023-3-3,
扫 描 看 全 文
张涵硕, 李涛, 李勇朝, 等. 基于归一化循环前缀相关谱的无人机识别技术[J]. 西安电子科技大学学报, 2024,51(2):68-75.
Hanshuo ZHANG, Tao LI, Yongzhao LI, et al. Drone identification based on the normalized cyclic prefix correlation spectrum[J]. Journal of Xidian University, 2024,51(2):68-75.
张涵硕, 李涛, 李勇朝, 等. 基于归一化循环前缀相关谱的无人机识别技术[J]. 西安电子科技大学学报, 2024,51(2):68-75. DOI: 10.19665/j.issn1001-2400.20230704.
Hanshuo ZHANG, Tao LI, Yongzhao LI, et al. Drone identification based on the normalized cyclic prefix correlation spectrum[J]. Journal of Xidian University, 2024,51(2):68-75. DOI: 10.19665/j.issn1001-2400.20230704.
基于射频的无人机识别技术具有探测距离长、环境依赖性低的优点
已成为无人机监控系统不可或缺的技术手段。如何在低信噪比条件下有效识别无人机是当前热点问题。为保证良好的图传质量
无人机通常采用带有循环前缀结构的正交频分复用(OFDM)调制作为图传链路的调制方式。据此特性
首先提出一种基于归一化循环前缀相关谱和卷积神经网络的无人机识别算法。依据对无人机信号的OFDM符号周期和循环前缀长度的分析结果
计算信号归一化循环前缀相关谱。当归一化循环前缀相关谱的计算参数与无人机信号的调制参数匹配时
谱线中会出现若干相关峰
峰的位置分布反映了无人机信号帧结构、突发规则等协议特征。然后
利用卷积神经网络对归一化循环前缀相关谱进行特征分析和提取
从而识别无人机。最后
利用通用软件无线电平台USRP X310对5款无人机的射频信号进行采集
构建实验数据集。实验结果表明
该算法优于基于频谱和基于时频谱的算法
且在低信噪比下仍然有效。
Radio-frequency(RF)-based drone identification technology has the advantages of long detection distance and low environmental dependence
so that it has become an indispensable approach to monitoring drones.How to identify a drone effectively at the low signal-to-noise ratio(SNR) regime is a hot topic in current research.To ensure excellent video transmission quality
drones commonly adopt orthogonal frequency division multiplexing(OFDM) modulation with cyclic prefix(CP) as the modulation of video transmission links.Based on this property
we propose a drone identification algorithm based on the convolutional neural network(CNN) and normalized CP correlation spectrum.Specifically
we first analyze the OFDM symbol durations and CP durations of drone signals
on the basis of which the normalized CP correlation spectrum is calculated.When the modulation parameters of a drone signal match the calculated normalized CP correlation spectrum
several correlation peaks will appear in the normalized CP correlation spectrum.The positions of these peaks reflect the protocol characteristics of drone signals
such as frame structure and burst rules.Finally
for identifying drones
a CNN is trained to extract these characteristics from the normalized CP correlation spectrum.In this work
a universal software radio peripheral(USRP) X310 is utilized to collect the RF signals of five drones to construct the experimental dataset.Experimental results show that the proposed algorithm performs better than spectrum-based and spectrogram-based algorithms
and it remains effective at low SNRs.
无人机射频信号OFDM归一化循环前缀相关谱
dronesRF signalOFDMCP correlation spectrum
SHAKHATREH H, SAWALMEH A H, Al-FUQAHA A, et al. Unmanned Aerial Vehicles(UAVs):A Survey on Civil Applications and Key Research Challenges[J]. IEEE Access, 2019,7:48572-48634.
徐子蒙, 王博文, 云霄, 等. 灾后无人机不确定偏好序下稳定中继选择方法[J]. 西安电子科技大学学报, 2022, 49(6):32-41.
XU Zimeng, WANG Bowen, YUN Xiao, et al. Stable Relay Selection Method under an Uncertain Preference Ordinal for UAV in Post-Disaster[J]. Journal of Xidian University, 2022, 49(6):32-41.
李冬霞, 宋思雨, 刘海涛. DF-UAV中继广播通信系统航迹优化方法[J]. 西安电子科技大学学报, 2023, 50(1):66-75.
LI Dongxia, SONG Siyu, LIU Haitao. Trajectory Optimization Method of the DF-UAV Relay Broadcast Communication System[J]. Journal of Xidian University, 2023, 50(1):66-75.
杨欣, 毛雅淇, 王伶. 无人机辅助通信的密集无线网络MAC协议[J]. 西安电子科技大学学报, 2022, 49(3):10-20.
YANG Xin, MAO Yaqi, WANG Ling. MAC Protocol for the Dense Wireless Network of UAV Assisted Communication[J]. Journal of Xidian University, 2022, 49(3):10-20.
DATA BRIDGE. Global Drone Services Market - Industry Trends and Forecast to 2029(2022)[EB/OL].[2022-04-01]. https://www.databridgemarketresearch.com/reports/global-drone-services-market.2022. https://www.databridgemarketresearch.com/reports/global-drone-services-market.2022https://www.databridgemarketresearch.com/reports/global-drone-services-market.2022
MESSINA M, PINELLI G. Classification of Drones with A Surveillance Radar Signal[C]// Proceedings of the 12th International Conference on Computer Vision Systems. Heidelberg:Springer,2019:723-733.
LI C, LING H. An Investigation on the Radar Signatures of Small Consumer Drones[J]. IEEE Antennas and Wireless Propagation Letters, 2017,16:649-652.
崔艳鹏, 王元皓, 胡建伟. 一种改进YOLOv3的动态小目标检测方法[J]. 西安电子科技大学学报, 2020, 47(3):1-7.
CUI Yanpeng, WANG Yuanhao, HU Jianwei. Detection Method for a Dynamic Small Target Using the Improved YOLOv3[J]. Journal of Xidian University, 2020, 47(3):1-7.
BERNARDINI A, MANGIAOORDI F, PALLOTTI E, et al. Drone Detection by Acoustic Signature Identification[J]. IEEE Open Journal of the Communications Society, 2020, 1(1):60-76.
MARTINS E, ERDEN F, CHETHAN K A, et al. Detection and Classification of UAVs Using RF Fingerprints in the Presence of Wi-Fi and Bluetooth Interference[J]. IEEE Communications Magazine, 2021, 59(5):121-127.
ZHAO C, CHEN C, CAI Z, et al. Classification of Small UAVs Based on Auxiliary Classifier Wasserstein GANs[C]//Proceedings of 2018 IEEE Global Communications Conference. Piscataway:IEEE, 2018:206-212.
NASIM S, GUILLEM R M, BATOOL S, et al. RF Fingerprinting Unmanned Aerial Vehicles with Non-Standard Transmitter Waveforms[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12):15518-15531.
SA’D M, ALI A A, MOHAMED A, et al. RF-Based Drone Detection and Identification Using Deep Learning Approaches:An Initiative Towards A Large Open Source Drone Database[J]. Future Generation Computer Systems, 2019,100:86-97.
YANG S, LUO Y, MIAO W, et al. RF Signal-Based UAV Detection and Mode Classification:A Joint Feature Engineering Generator and Multi-Channel Deep Neural Network Approach[J]. Entropy, 2021, 23(12):1678.
SANJOY B, SREERAJ R, SOFIE P, et al. Drone Classification from RF Fingerprints Using Deep Residual Nets[C]//Proceedings of 2021 International Conference on Communication Systems & Networks. Piscataway:IEEE, 2021,548-555.
BASAK S, RAJENDRAN S, POLLIN S, et al. Combined RF-Based Drone Detection and Classification[J]. IEEE Transactions on Cognitive Communications and Networking, 2022, 8(1):111-120.
FANID A A, DABAGHCHIAN M, WANG N, et al. Machine Learning-Based Delay-Aware UAV Detection and Operation Mode Identification Over Encrypted Wi-Fi Traffic[J]. IEEE Transactions on Information Forensics and Security, 2020,15:2346-2360.
GUILLEM R, ROY C K. Classifying UAVs with Proprietary Waveforms via Preamble Feature Extraction and Federated Learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7):6279-6290.
彭博. 无人机图传信号分析与识别研究[D]. 北京: 北京邮电大学, 2020.
王举权. 无人机通信信号的非合作检测与解码技术[D]. 长沙: 国防科技大学, 2018.
邝野. 基于5G网络的无人机超清实时图传系统设计与实现[D]. 广州: 广东工业大学, 2022.
于淼. 应用于无人机图传的DVB-T算法研究及FPGA实现[D]. 哈尔滨: 哈尔滨工业大学, 2019.
严富成. OFDM信号的盲解调技术研究[D]. 成都: 电子科技大学, 2019.
BELIAEV A V, KASYANOV A O. OFDM Structural-Time Parameters Estimation[C]//Processing of 2019 Radiation and Scattering of Electromagnetic Waves. Piscataway:IEEE, 2019,324-327.
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778.
BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4:Optimal Speed and Accuracy of Object Detection(2020)[J/OL].[2020-04-23]. http://arxiv.org/abs/2004.10934. http://arxiv.org/abs/2004.10934http://arxiv.org/abs/2004.10934
DUCHI J C, HAZAN E, SINGER Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[J]. Journal of Machine Learning Research, 2011,12:2121-2159.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构