1. 西安电子科技大学 空天地一体化综合业务网国家重点实验室,陕西 西安 710071
2. 西安电子科技大学 广州研究院,广东 广州 510555
3. 西安电子科技大学 杭州研究院,浙江 杭州 311200
4. 广州科语机器人有限公司 研发事业部,广东 广州 511495
[ "吴庭明(1999—),男,西安电子科技大学硕士研究生,E-mail:[email protected]; " ]
吴宪云(1985—),男,副教授,E-mail:[email protected]
[ "邓 亮(1981—),男,工程师,E-mail:[email protected] ; " ]
[ "李云松(1974—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-4-20,
网络出版日期:2023-10-7,
收稿日期:2023-2-6,
扫 描 看 全 文
吴庭明, 吴宪云, 邓亮, 等. 一种添加振荡抑制的移动机器人避障算法[J]. 西安电子科技大学学报, 2024,51(2):84-95.
Tingming WU, Xianyun WU, Liang DENG, et al. Obstacle avoidance algorithm for the mobile robot with vibration suppression[J]. Journal of Xidian University, 2024,51(2):84-95.
吴庭明, 吴宪云, 邓亮, 等. 一种添加振荡抑制的移动机器人避障算法[J]. 西安电子科技大学学报, 2024,51(2):84-95. DOI: 10.19665/j.issn1001-2400.20230701.
Tingming WU, Xianyun WU, Liang DENG, et al. Obstacle avoidance algorithm for the mobile robot with vibration suppression[J]. Journal of Xidian University, 2024,51(2):84-95. DOI: 10.19665/j.issn1001-2400.20230701.
针对室内移动机器人动态避障算法易出现局部死区问题
提出一种改进VFH动态避障算法。首先
针对传统VFH类算法
在候选波谷评价函数中引入波谷宽度和路径长度评价指标以降低移动机器人陷入局部死区的概率
提高路径平滑性;其次
针对局部避障算法受限于局部环境易在障碍物附近发生来回振荡的问题
引入振荡评价函数
通过计算移动机器人位姿到起始点和终点的加权欧氏距离绘制振荡评价曲线
利用自动峰值检测和一阶前向差分曲线获取振荡位置
并添加振荡抑制
使移动机器人逃离局部死区。仿真验证表明
在100组仿真场景中
改进算法陷入局部死区的场景减少约70组
平均规划迭代次数降低约32.3次
平均路径长度降低约26.2%
平均累计转折角度降低约79.6%。该算法有效降低了局部避障的代价
提高路径平滑度的同时降低在局部特殊环境下陷入死区的概率。
Aiming at the problem that dynamic obstacle avoidance algorithms for indoor mobile robots are prone to local dead zones
an improved vector field histogram(VFH) dynamic obstacle avoidance algorithm is proposed.First
according to traditional VFH-class algorithms
a path lenght cost and an evaluation index of trough width are introduced to the candidate evaluation function of the trough to reduce the probability of the mobile robot falling into local dead zones and to improve path smoothness.Second
in view of the problem that local obstacle avoidance algorithms are limited to local environment and oscillate back and forth near obstacles easily
an oscillation evaluation function is introduced with an oscillation evaluation curve drawn by calculating the weighted Euclidean distances from the pose of the mobile robot to the starting and ending points.Automatic peak detection and a first-order forward difference curve are employed to obtain the oscillation positions
and then the oscillation suppression is taken to make the mobile robot escape the local dead zones.Simulation results show that within 100 groups of simulation scenarios
the number of scenarios wherein the improved VFH algorithm falls into the local dead zones is reduced by 70 groups
the average number of planning iterations is decreased by 32.3 times
the average path length is reduced by 26.2%
and the average cumulative turning angle is declined by 79.6%.The algorithm can effectively reduce the cost of the local obstacle avoidance
improve the path smoothness and reduce the probability of falling into the dead zones in local special environment.
避障VFH局部死区振荡曲线
obstacle avoidanceVFHlocal dead zoneoscillation curve
宋晓茹, 任怡悦, 高嵩, 等. 移动机器人路径规划综述[J]. 计算机测量与控制, 2019, 27(4):1-5.
SONG Xiaoru, REN Yiyue, GAO Song, et al. Survey on Technology of Mobile Robot Path Planning[J]. Computer Measurement & Control, 2019, 27(4):1-5.
BORENSTEIN J, KOREN Y. The Vector Field Histogram-Fast Obstacle Avoidance for Mobile Robots[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3):278-288.
ULRICH I, BORENSTEIN J. VFH+:Reliable Obstacle Avoidance for Fast Mobile Robots[C]//Proceedings. 1998 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 1998: 1572-1577.
ULRICH I, BORENSTEIN J. VFH/sup*/:Local Obstacle Avoidance with Look-Ahead Verification[C]//Proceedings 2000 ICRA.Millennium Conference.IEEE International Conference on Robotics and Automation.Symposia Proceedings. Piscataway:IEEE, 2000: 2505-2511.
庄宇辉, 赵成萍, 严华. 一种针对VFH系列算法阈值敏感问题的改进策略[J]. 四川大学学报(自然科学版), 2018, 55(5):985-992.
ZHUANG Yuhui, ZHAO Chengping, YAN Hua. An Improved Strategy for VFH Threshold Sensitive Problem[J]. Journal of Sichuan University(Natural Science Edition), 2018, 55(5):985-992.
WU C F, WANG Y L, MA L, et al. VFH+ Based Local Path Planning for Unmanned Surface Vehicles[C]// 2021 IEEE International Conference on Recent Advances in Systems Science and Engineering(RASSE). Piscataway:IEEE, 2021: 1-6.
MA X, SUN H, XU E, et al. Fast Adaptable Mobile Robot Navigation in Dynamic Environment[C]// 2020 5th International Conference on Advanced Robotics and Mechatronics(ICARM). Piscataway:IEEE, 2020: 347-352.
张品, 李长勇. 能耗优化的改进IWOA-APF移动机器人路径规划[J]. 组合机床与自动化加工技术, 2022(11):11-14. DOI:10.13462/j.cnki.mmtamt.2022.11.003http://doi.org/10.13462/j.cnki.mmtamt.2022.11.003
ZHANG Pin, LI Changyong. Improved IWOA-APF Path Planning for Mobile Robots Considering Energy Consumption[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(11):11-14.
ZHANG G, ZHANG Y, XU J, et al. Intelligent Vector Field Histogram Based Collision Avoidance Method for AUV[J]. Ocean Engineering, 2022,264:112525.
周俊, 庄宇辉, 严华. 基于记忆矩阵A*引导域的VFH算法改进策略[J]. 四川大学学报(自然科学版), 2020, 57(4):704-710.
ZHOU Jun, ZHUANG Yuhui, YAN Hua. An Improved Strategy of VFH Algorithm Based on Memory Matrix and A* Guided Domain[J]. Journal of Sichuan University(Natural Science Edition), 2020, 57(4):704-710.
DONG X, WANG M, KANG C, et al. Improved Auto-Regulation VFH Algorithm for Obstacle Avoidance of Unmanned Vehicles[C]// 2021 China Automation Congress(CAC). Piscataway:IEEE, 2021: 6467-6472.
QU P, XUE J, MA L, et al. A Constrained VFH Algorithm for Motion Planning of Autonomous Vehicles[C]// 2015 IEEE Intelligent Vehicles Symposium(IV). Piscataway:IEEE, 2015: 700-705.
屈盼让, 薛建儒, 朱耀国, 等. 面向无人车运动规划问题的VFH算法[J]. 计算机仿真, 2018, 35(12):245-251.
QU Panrang, XUE Jianru, ZHU Yaoguo, et al. A Constrained VFH Algorithm for Motion Planning of Autonomous Vehicles[J]. Computer Simulation, 2018, 35(12):245-251.
李晓旭, 马兴录, 王先鹏. 移动机器人路径规划算法综述[J]. 计算机测量与控制, 2022, 30(7):9-19.
LI Xiaoxu, MA Xinglu, WANG Xianpeng. A Survey of Path Planning Algorithms for Mobile Robots[J]. Computer Measurement & Control, 2022, 30(7):9-19.
SCHOLKMANN F, BOSS J, WOLF M. An Efficient Algorithm for Automatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals[J]. Algorithms, 2012, 5(4):588-603.
秦宁宁, 张臣臣. 模糊聚类下的接入点选择匹配定位算法[J]. 西安电子科技大学学报, 2022, 49(4):71-81.
QIN Ningning, ZHANG Chenchen. Access Point Selection Matching Localization Algorithm Based on Fuzzy Clustering[J]. Journal of Xidian University, 2022, 49(4):71-81.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构