1. 国防科技大学 信息通信学院,湖北 武汉 430035
2. 中国人民解放军93930部队,陕西 西安 710061
[ "廖晓闽(1984—),女,副教授,E-mail:[email protected];" ]
[ "韩双利(1979—),女,工程师,E-mail:[email protected];" ]
朱璇(1982—),男,副教授,E-mail:[email protected]
[ "林初善(1979—),男,副教授,Email:[email protected];" ]
[ "王海鹏(2001—),男,国防科技大学本科生,Email:[email protected]。" ]
扫 描 看 全 文
廖晓闽, 韩双利, 朱璇, 等. 无人机干扰辅助认知隐蔽通信资源优化算法[J]. 西安电子科技大学学报, 2023,50(6):75-83.
廖晓闽, 韩双利, 朱璇, 等. 无人机干扰辅助认知隐蔽通信资源优化算法[J]. 西安电子科技大学学报, 2023,50(6):75-83. DOI: 10.19665/j.issn1001-2400.20230603.
面向无人机干扰辅助下的认知无线电网络隐蔽通信场景,针对无人机干扰源飞行轨迹和发送功率联合优化问题,提出了一种基于迁移式生成对抗网络的资源优化算法。首先,从实际隐蔽通信场景出发,构建了无人机干扰辅助认知隐蔽通信模型;其次,引入迁移学习和生成对抗网络思想,设计了基于迁移式生成对抗网络的资源优化算法,主要由源域生成器、目标域生成器和鉴别器组成。通过迁移学习来提取进行隐蔽通信时合法用户的资源分配主要特征,然后将隐蔽通信问题转化为合法用户与窃听者之间的动态博弈问题,以竞争的方式交替训练目标域生成器和鉴别器,达到纳什均衡,得到隐蔽通信资源优化方案。仿真结果表明,该算法能够在已知窃听者信道分布信息和未知窃听者检测阈值的情况下,生成近似最优的隐蔽通信资源优化方案,并且具有快速收敛的能力。
Aiming at the covert communication scenario of an unmanned aerial vehicle(UAV) jammer assisted cognitive radio network,a transferred generative adversarial network based resource optimization algorithm is proposed for the UAV’s joint trajectory and transmit power optimization problem.First,based on the actual covert communication scenario,the UAV jammer assisted cognitive covert communication model is constructed.Then,a transferred generative adversarial network based resource allocation algorithm is designed,which introduces a transfer learning and generative adversarial network.The algorithm consists of a source domain generator,a target domain generator,and a discriminator,which extract the main resource allocation features of legitimate users not transmitting covert message by transfer learning,then transform the whole covert communication process into an interactive game between the legitimate users and the eavesdropping,alternatively train the target domain generator and discriminator in a competitive manner,and achieve the Nash equilibrium to obtain resource optimization solution for the covert communications.Numerical results show that the proposed algorithm can attain near-optimal resource optimization solution for the covert communication and achieve rapid convergence under the assumptions of knowing the channel distribution information and not knowing the detection threshold of the eavesdropper.
隐蔽通信无人机资源优化迁移学习生成对抗网络
covert communicationunmanned aerial vehicleresource optimizationtransfer learninggenerative adversarial network
LI M, TAO X, WU H. Joint Trajectory and Resource Optimization for Covert Communication in UAV-Enabled Relaying Systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4):5518-5523. DOI:10.1109/TVT.2022.3225508http://doi.org/10.1109/TVT.2022.3225508https://ieeexplore.ieee.org/document/9965749/https://ieeexplore.ieee.org/document/9965749/
BASH B A, GOECKEL D, TOWSLEY D. Limits of Reliable Communication with Low Probability of Detection on AWGN Channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9):1921-1930. DOI:10.1109/JSAC.2013.130923http://doi.org/10.1109/JSAC.2013.130923http://ieeexplore.ieee.org/document/6584948/http://ieeexplore.ieee.org/document/6584948/
CHE P H, BAKSHI M, JAGGI S. Reliable Deniable Communication:Hiding Messages in Noise[C]// Proceedings of the 2013 IEEE International Symposium on Information Theory.Piscataway:IEEE, 2013:2945-2949.
WANG L, WORNELL G W, ZHENG L. Limits of Low Probability of Detection Communication over a Discrete Memoryless Channel[C]// Proceedings of the 2015 IEEE International Symposium on Information Theory(ISIT).Piscataway:IEEE, 2015:2525-2529.
LU X, YAN S, YANG W. Covert Communication with Time Uncertainty in Time-Critical Wireless Networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(2):1116-1129. DOI:10.1109/TWC.2022.3201872http://doi.org/10.1109/TWC.2022.3201872https://ieeexplore.ieee.org/document/9875023/https://ieeexplore.ieee.org/document/9875023/
HE R, LI G, WANG H, et al. Adaptive Power Control for Cooperative Covert Communication with Partial Channel State Information[J]. IEEE Wireless Communications Letters, 2022, 11(7):1428-1432. DOI:10.1109/LWC.2022.3172683http://doi.org/10.1109/LWC.2022.3172683https://ieeexplore.ieee.org/document/9769772/https://ieeexplore.ieee.org/document/9769772/
LU X, HUANG Y, YAN S, et al. Energy-Efficient Covert Wireless Communication Through Probabilistic Jamming[J]. IEEE Wireless Communications Letters, 2023, 12(5):932-936. DOI:10.1109/LWC.2023.3253075http://doi.org/10.1109/LWC.2023.3253075https://ieeexplore.ieee.org/document/10058980/https://ieeexplore.ieee.org/document/10058980/
胡锦松, 吴林梅, 束锋, 等. 无人机中继协助的有限码长隐蔽通信[J]. 电子与信息学报, 2022, 44(3):1006-1013.
HU Jinsong, WU Linmei, SHU Feng, et al. UAV-Relay Assisted Covert Communication with Finite Block-Length[J]. Journal of Electronics & Information Technology, 2022, 44(3):1006-1013.
LV L, WU Q, LI Z, et al. Covert Communication in Intelligent Reflecting Surface-Assisted NOMA Systems:Design,Analysis,and Optimization[J]. IEEE Transactions on Wireless Communications, 2022, 21(3):1735-1750. DOI:10.1109/TWC.2021.3106346http://doi.org/10.1109/TWC.2021.3106346https://ieeexplore.ieee.org/document/9524501/https://ieeexplore.ieee.org/document/9524501/
ZHENG T X, YANG Z T, WANG C, et al. Wireless Covert Communications Aided by Distributed Cooperative Jammingover Slow Fading Channels[J]. IEEE Transactions on Wireless Communications, 2021, 20(11):7026-7039. DOI:10.1109/TWC.2021.3080382http://doi.org/10.1109/TWC.2021.3080382https://ieeexplore.ieee.org/document/9442311/https://ieeexplore.ieee.org/document/9442311/
杨欣, 毛雅淇, 王伶. 无人机辅助通信的密集无线网络MAC协议[J]. 西安电子科技大学学报, 2022, 49(3):10-20.
YANG Xin, MAO Yaqi, WANG Ling. MAC Protocol for the Dense Wireless Network of UAV Assisted Communication[J]. Journal of Xidian University, 2022, 49(3):10-20.
RAO H M, XIAO S, YAN S H, et al. Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios[J]. IEEE Transactions on Wireless Communications, 2022, 21(12):10633-10647. DOI:10.1109/TWC.2022.3185492http://doi.org/10.1109/TWC.2022.3185492https://ieeexplore.ieee.org/document/9812482/https://ieeexplore.ieee.org/document/9812482/
彭旭. 基于全双工无人机的隐蔽无线通信技术研究[D]. 阜阳: 阜阳师范大学, 2022.
MAMAGHANI M T, HONG Y. Aerial Intelligent Reflecting Surface-Enabled Terahertz Covert Communications in Beyond-5G Internet of Things[J]. IEEE Internet of Things Journal, 2022, 9(19):19012-19033. DOI:10.1109/JIOT.2022.3163396http://doi.org/10.1109/JIOT.2022.3163396https://ieeexplore.ieee.org/document/9745104/https://ieeexplore.ieee.org/document/9745104/
WANG Y, YAN S, ZHOU X, et al. Covert Communication with Energy Replenishment Constraints in UAV Networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(9):10143-10148. DOI:10.1109/TVT.2022.3178021http://doi.org/10.1109/TVT.2022.3178021https://ieeexplore.ieee.org/document/9783114/https://ieeexplore.ieee.org/document/9783114/
DU H, NIYATO D, XIE Y, et al. Performance Analysis and Optimization for Jammer-Aided Multiantenna UAV Covert Communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10):2962-2979. DOI:10.1109/JSAC.2022.3196131http://doi.org/10.1109/JSAC.2022.3196131https://ieeexplore.ieee.org/document/9849051/https://ieeexplore.ieee.org/document/9849051/
WANG C, CHEN X, AN J, et al. Covert Communication Assisted by UAV-IRS[J]. IEEE Transactions on Communications, 2023, 71(1):357-369. DOI:10.1109/TCOMM.2022.3220903http://doi.org/10.1109/TCOMM.2022.3220903https://ieeexplore.ieee.org/document/9943536/https://ieeexplore.ieee.org/document/9943536/
LI Z, LIAO X M, SHI J, et al. MD-GAN Based UAV Trajectory and Power Optimization for Cognitive Covert Communications[J]. IEEE Internet of Things Journal, 2022, 9(12):10187-10199. DOI:10.1109/JIOT.2021.3122014http://doi.org/10.1109/JIOT.2021.3122014https://ieeexplore.ieee.org/document/9584882/https://ieeexplore.ieee.org/document/9584882/
CHEN X, ZHANG N, TANG J, et al. UAV-Aided Covert Communication with a Multi-Antenna Jammer[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11):11619-11631. DOI:10.1109/TVT.2021.3112121http://doi.org/10.1109/TVT.2021.3112121https://ieeexplore.ieee.org/document/9536435/https://ieeexplore.ieee.org/document/9536435/
JIANG X, YANG Z, ZHAO N, et al. Resource Allocation and Trajectory Optimization for UAV-Enabled Multi-User Covert Communications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2):1989-1994. DOI:10.1109/TVT.2021.3053936http://doi.org/10.1109/TVT.2021.3053936https://ieeexplore.ieee.org/document/9334412/https://ieeexplore.ieee.org/document/9334412/
段正祥, 杨欣, 张兆林, 等. 加权分数傅里叶辅助的上行NOMA隐蔽通信[J]. 西安电子科技大学学报, 2023, 50(2):54-63.
DUAN Zhengxiang, YANG Xin, ZHANG Zhaolin, et al. Covert Communication in Uplink NOMA Systems with Weighted Fractional Fourier Transform[J]. Journal of Xidian University, 2023, 50(2):54-63.
LIAO X M, SI J B, SHI J. Generative Adversarial Network Assisted Power Allocation for Cooperative Cognitive Covert Communication System[J]. IEEE Communications Letters, 2020, 24(7):1463-1467. DOI:10.1109/COML.4234http://doi.org/10.1109/COML.4234https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4234https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4234
HAGAN M T, DEMUTH H B, BEALE M H, et al. Neural Network Design, 2nd Edition[M]. Oklahoma: Martin Hagan, 2014:1-802.
YOSINSKI J, CLUNE J, BENGIO Y, et al. How Transferable Are Features in Deep Neural Networks?[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. New York: ACM, 2014:3320-3328.
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative Adversarial Networks[J]. Communications of the ACM, 2020, 63(11):139-144. DOI:10.1145/3422622http://doi.org/10.1145/3422622https://dl.acm.org/doi/10.1145/3422622https://dl.acm.org/doi/10.1145/3422622
ZHOU Y, YEOH P L, CHEN H, et al. Improving Physical Layer Security via a UAV Friendly Jammer for Unknown Eavesdropper Location[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11):11280-11284. DOI:10.1109/TVT.2018.2868944http://doi.org/10.1109/TVT.2018.2868944https://ieeexplore.ieee.org/document/8456560/https://ieeexplore.ieee.org/document/8456560/
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构