西安电子科技大学 微电子学院,陕西 西安 710071
[ "王蕾(1989—),女,西安电子科技大学博士研究生,E-mail:[email protected];" ]
[ "柴常春(1960—),男,教授,E-mail:[email protected];" ]
赵天龙(1988—),男,讲师,E-mail:[email protected]
[ "李福星(1996—),男,西安电子科技大学博士研究生,E-mail:[email protected];" ]
[ "秦英朔(1998—),男,西安电子科技大学硕士研究生,E-mail:[email protected];" ]
[ "杨银堂(1962—),男,教授,E-mail:[email protected]。" ]
扫 描 看 全 文
王蕾, 柴常春, 赵天龙, 等. p-GaN HEMT 强电磁脉冲损伤效应与防护设计研究[J]. 西安电子科技大学学报, 2023,50(6):34-43.
王蕾, 柴常春, 赵天龙, 等. p-GaN HEMT 强电磁脉冲损伤效应与防护设计研究[J]. 西安电子科技大学学报, 2023,50(6):34-43. DOI: 10.19665/j.issn1001-2400.20230502.
如今,恶劣的电磁环境已经对电子系统的安全构成了严重威胁。氮化镓基高电子迁移率晶体管的优异性能使其更加适合于高功率,高频应用领域。随着晶体外延材料质量的不断提高和器件工艺的改进,氮化镓器件向高功率和小型化方向快速发展,器件的可靠性和稳定性受到巨大挑战。深入研究了增强型氮化镓高电子迁移率晶体管的强电磁脉冲损伤效应,通过分析器件内部多物理量分布的变化,探究其失效机理。研究结果表明,强电磁脉冲作用下器件的损伤主要是由自热效应、雪崩击穿和热载流子效应等不同的热累积效应引起的。在此基础上,进行了多重防护设计,并通过仿真研究进行了验证。结果表明,氧化铝作为钝化层材料可以增强器件的击穿特性,提高其抗电磁干扰能力;同时,也可以通过在源极和栅极串联电阻的方式提高器件的抗强电磁脉冲损伤能力。以上结论对于工作在恶劣电磁环境中氮化镓器件设计具有重要的参考意义。
Nowadays,severe electromagnetic circumstances pose a serious threat to electronic systems.The excellent performance of gallium nitride based high electron mobility transistors makes them more suitable for high power and high frequency applications.With the continuous improvement in the quality of crystal epitaxial material and device manufacture technology,gallium nitride semiconductor devices are rapidly developing towards the direction of high power and miniaturization,which challenges the reliability and stability of devices.In this paper,the damage effects of the high power electromagnetic pulse(EMP) on the enhanced GaN high-electron-mobility transistor(HEMT) are investigated in detail.The mechanism is presented by analyzing the variation of the internal multiple physical quantities distribution in the device.It is revealed that the device damage is dominated by the different thermal accumulation effect such as self-heating,avalanche breakdown and hot carrier emission during the action of the high power EMP.Furthermore,the multi-scale protection design of the GaN HEMT against the high power electromagnetic interference(EMI) is presented and verified by simulation study.The device structure optimization results demonstrate that a proper passivation layer which enhances the breakdown characteristics can improve the anti-EMI capability.The circuit optimization presents the influences of external components on the damage progress.It is found that the resistive components which are in series at the source and gate will strengthen the capability of the device to withstand high power EMP damage.All above conclusions are important for device reliability design using gallium nitride materials,especially when the device operates under severe electromagnetic circumstances.
氮化镓电磁脉冲损伤效应防护设计
gallium nitrideelectromagnetic pulsedamage effectprotection design
LI B, YIN Y, YANG Z, et al. Recent Progress on the Vertical GaN Power Transistor and its Integrated Circuit[J]. Chinese Science Bulletin, 2023, 68:1727-1740.
HUANG R, ZHANG W, ZHANG J, et al. 2.29-kV GaN-Based Double-Channel Schottky Barrier Diodes on Si Substrates with High Von Uniformity[J]. Science China- Information Sciences, 2023, 66:169404. DOI:10.1007/s11432-022-3520-8http://doi.org/10.1007/s11432-022-3520-8
FAN Y, LIU X, HUANG R, et al.High-Breakdown-Voltage(>3000V) and Low-Power-Dissipation Al0.3Ga0.7N/GaN/Al0.1Ga0.9N Double-Heterostructure HEMTs with Ohmic/Schottky Hybrid Drains and Al2O3/SiO2 passivation[J]. Science China- Information Sciences, 2023, 66:133707.
ZHAO S, ZHANG J, ZHANG Y, et al. 1.7 kVNormally-off p-GaN Gate High-Electron-Mobility Transistors on a Semi-Insulating SiC Substrate[J]. Science China- Information Sciences, 2023, 66:122407. DOI:10.1007/s11432-022-3475-9http://doi.org/10.1007/s11432-022-3475-9
AMBACHER O, CHRISTIAN B, YASSINE M, et al. Polarization Induced Interface and Electron Sheet Charges of Pseudomorphic ScAlN/GaN,GaAlN/GaN,InAlN/GaN,and InAlN/InN Heterostructures[J]. Journal of Applied Physics, 2021, 129:204501 DOI:10.1063/5.0049185http://doi.org/10.1063/5.0049185https://pubs.aip.org/jap/article/129/20/204501/157454/Polarization-induced-interface-and-electron-sheethttps://pubs.aip.org/jap/article/129/20/204501/157454/Polarization-induced-interface-and-electron-sheet
NGUYEN H Q, NGUYEN T, TANNER P, et al. Piezotronic Effect in a Normally off p-GaN/AlGaN/GaN HEMT toward Highly Sensitive Pressure Sensor[J]. Applied Physics Letters, 2021, 118:242104. DOI:10.1063/5.0053701http://doi.org/10.1063/5.0053701https://pubs.aip.org/apl/article/118/24/242104/238984/Piezotronic-effect-in-a-normally-off-p-GaN-AlGaNhttps://pubs.aip.org/apl/article/118/24/242104/238984/Piezotronic-effect-in-a-normally-off-p-GaN-AlGaN
FANG Y, CHEN L, LIU Y, et al. Reduction in RF Loss Based on AlGaN Back-Barrier Structure Changes[J]. Micromachines, 2022, 13:830. DOI:10.3390/mi13060830http://doi.org/10.3390/mi13060830https://www.mdpi.com/2072-666X/13/6/830https://www.mdpi.com/2072-666X/13/6/830
CHEN D, YUAN P, ZHAO S, et al. Wide-Range-Adjusted threshold Voltages for E-Mode AlGaN/GaN HEMT with a p-SnO Cap Gate. Science China-Materials, 2022, 65:795-802. DOI:10.1007/s40843-021-1838-3http://doi.org/10.1007/s40843-021-1838-3
WANG R, GUO H, HOU Q, et al. Evaluation on Temperature-Dependent Transient Vt Instability in p-GaN Gate HEMTs under Negative Gate Stress by Fast Sweeping Characterization[J]. Micromachines, 2022, 13:1096. DOI:10.3390/mi13071096http://doi.org/10.3390/mi13071096https://www.mdpi.com/2072-666X/13/7/1096https://www.mdpi.com/2072-666X/13/7/1096
LI X, DU Z, LI M. Efficient Reciprocity-Based Hybrid Approach for Analyzing Radiated Susceptibility Responses of Multilayer PCBs[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59:952-961. DOI:10.1109/TEMC.2016.2631566http://doi.org/10.1109/TEMC.2016.2631566http://ieeexplore.ieee.org/document/7782302/http://ieeexplore.ieee.org/document/7782302/
NITSCH D, CAMP M, SABATH F, et al. Susceptibility of Some Electronic Equipment to HPEM Threats[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46:380-389. DOI:10.1109/TEMC.2004.831842http://doi.org/10.1109/TEMC.2004.831842http://ieeexplore.ieee.org/document/1325792/http://ieeexplore.ieee.org/document/1325792/
HOAD R, CARTER N J, HERKE D, et al. Trends in EM Susceptibility of IT Equipment[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46:390-395. DOI:10.1109/TEMC.2004.831815http://doi.org/10.1109/TEMC.2004.831815http://ieeexplore.ieee.org/document/1325793/http://ieeexplore.ieee.org/document/1325793/
LI H, CHAI C, LIU Y, et al. Damage EFfects and Mechanism of the Silicon NPN Monolithic Composite Transistor Induced by High-Power Microwaves[J]. Chinese Physics B, 2018, 27:088502. DOI:10.1088/1674-1056/27/8/088502http://doi.org/10.1088/1674-1056/27/8/088502https://iopscience.iop.org/article/10.1088/1674-1056/27/8/088502https://iopscience.iop.org/article/10.1088/1674-1056/27/8/088502
CHAI C, XI X, REN X, et al. The Damage Effect and Mechanism of the Bipolar Transistor Induced by the Intense Electromagnetic Pulse[J]. Acta Physica Sinica, 2010, 59:8118-8124 DOI:10.7498/apshttp://doi.org/10.7498/apshttps://wulixb.iphy.ac.cn/https://wulixb.iphy.ac.cn/
ZHANG Y, CHAI C, LIU Y, et al. Modeling and Understanding of the Thermal Failure Induced by High Power microwave in CMOS Inverter[J]. Chinese Physics B, 2017, 26:058502. DOI:10.1088/1674-1056/26/5/058502http://doi.org/10.1088/1674-1056/26/5/058502https://iopscience.iop.org/article/10.1088/1674-1056/26/5/058502https://iopscience.iop.org/article/10.1088/1674-1056/26/5/058502
LI F, CHAI C, HAN W, et al. Study on High Power Microwave Nonlinear Effects and Degradation Characteristics of C-Band Low Noise Amplifier[J]. Microelectronics Reliability, 2022, 128:114427. DOI:10.1016/j.microrel.2021.114427http://doi.org/10.1016/j.microrel.2021.114427https://linkinghub.elsevier.com/retrieve/pii/S0026271421003930https://linkinghub.elsevier.com/retrieve/pii/S0026271421003930
LIU Y, CHAI C, FAN Q, et al. Ku Band Damage Characteristics of GaAs pHEMT Induced by a Front-Door Coupling Microwave Pulse[J]. Microelectronics Reliability, 2016, 66:32-37. DOI:10.1016/j.microrel.2016.09.002http://doi.org/10.1016/j.microrel.2016.09.002https://linkinghub.elsevier.com/retrieve/pii/S0026271416303316https://linkinghub.elsevier.com/retrieve/pii/S0026271416303316
KIM K, ILIADIS A. Impact of Microwave Interference on Dynamic Operation and Power Dissipation of CMOS Inverters[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49:329-338. DOI:10.1109/TEMC.15http://doi.org/10.1109/TEMC.15https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=15https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=15
CHAHINE I, KADI M, GABORIAUD E, et al. Characterization and Modeling of the Susceptibility of Integrated Circuits to Conducted Electromagnetic Disturbances Up to 1 GHz[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50:285-293. DOI:10.1109/TEMC.2008.918983http://doi.org/10.1109/TEMC.2008.918983http://ieeexplore.ieee.org/document/4517022/http://ieeexplore.ieee.org/document/4517022/
MA Z, CHAI C, REN X, et al. Microwave Damage Susceptibility Trend of a Bipolar Transistor as a Function of Frequency[J]. Chinese Physics B, 2012, 21:022004
YU X, CHAI C, LIU Y, et al. Modeling and Understanding of the Frequency Dependent HPM Upset Susceptibility of the CMOS Inverter[J]. Science China Information Sciences, 2015, 58:1-11.
QIN Y, CHAI C, LI F, et al. Study of Self-Heating and High-Power Microwave Effects for Enhancement-Mode p-Gate GaN HEMT[J]. Micromachines, 2022, 13:106. DOI:10.3390/mi13010106http://doi.org/10.3390/mi13010106https://www.mdpi.com/2072-666X/13/1/106https://www.mdpi.com/2072-666X/13/1/106
WANG L, CHAI C, LI F, et al. Influence of Gate Voltage Dependent Piezoelectric Polarization on Damage Effect of GaN HEMT Induced by High Power Electromagnetic Pulse[J]. Microelectronics Reliability, 2022, 136:114665. DOI:10.1016/j.microrel.2022.114665http://doi.org/10.1016/j.microrel.2022.114665https://linkinghub.elsevier.com/retrieve/pii/S0026271422001895https://linkinghub.elsevier.com/retrieve/pii/S0026271422001895
WANG L, CHAI C, ZHAO T, et al. Mechanism Analysis and Multi-Scale Protection Design of GaN HEMT Induced by High-Power Electromagnetic Pulse[J]. Micromachines, 2022, 13:1288. DOI:10.3390/mi13081288http://doi.org/10.3390/mi13081288https://www.mdpi.com/2072-666X/13/8/1288https://www.mdpi.com/2072-666X/13/8/1288
LEBON G, MACHRIFI H, GRMELA M, et al. An Extended Thermodynamic Model of Transient Heat Conduction at Sub-Continuum Scales[J]. Physical and Engineering Sciences, 2011, 467:3241-3256.
AMBACHER O, SMART J, SHEALY J R, et al. Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures[J]. Journal of Applied Physics, 1999, 85:3222-3233. DOI:10.1063/1.369664http://doi.org/10.1063/1.369664https://pubs.aip.org/jap/article/85/6/3222/178438/Two-dimensional-electron-gases-induced-byhttps://pubs.aip.org/jap/article/85/6/3222/178438/Two-dimensional-electron-gases-induced-by
AMBACHER O, FOUTZ B, SMART J, et al. Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN heterostructures[J]. Journal of Applied Physics, 1999, 87:334-344. DOI:10.1063/1.371866http://doi.org/10.1063/1.371866https://pubs.aip.org/jap/article/87/1/334/368540/Two-dimensional-electron-gases-induced-byhttps://pubs.aip.org/jap/article/87/1/334/368540/Two-dimensional-electron-gases-induced-by
TYAGI M S, VAN R. Minority Carrier Recombination in Heavily-Doped Silicon[J]. Solid-State Electronics, 1983, 26:577-597. DOI:10.1016/0038-1101(83)90174-0http://doi.org/10.1016/0038-1101(83)90174-0https://linkinghub.elsevier.com/retrieve/pii/0038110183901740https://linkinghub.elsevier.com/retrieve/pii/0038110183901740
GOEBEL H, HOFFMANN K. Full Dynamic Power Diode Model Including Temperature Behavior for Use in Circuit Simulators[J]. Proceedings of the 4th International Symposium on Power Semiconductor Devices and Ics, 1992, 1:130-135.
XI X, CHAI C, LIU Y, et al. Influence of the External Condition on the Damage Process of the GaAs Pseudomorphic High Electron Mobility Transistor Induced by the Electromagnetic Pulse[J]. Acta Physica Sinica, 2017, 66:078401. DOI:10.7498/apshttp://doi.org/10.7498/apshttps://wulixb.iphy.ac.cn/https://wulixb.iphy.ac.cn/
LIU Y, CHAI C, YANG Y, et al. Damage Effect and Mechanism of the GaAs High Electron Mobility Transistor Induced by High Power Microwave[J]. Chinese Physics B, 2016, 25:048504. DOI:10.1088/1674-1056/25/4/048504http://doi.org/10.1088/1674-1056/25/4/048504https://iopscience.iop.org/article/10.1088/1674-1056/25/4/048504https://iopscience.iop.org/article/10.1088/1674-1056/25/4/048504
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构