1. 西安电子科技大学 电子工程学院,陕西 西安 710071
2. 重庆邮电大学 计算机科学与技术学院 图像认知重庆市重点实验室,重庆 400065
[ "韩 冰(1978—),女,教授,博士,E-mail:[email protected];" ]
[ "高 路(1995—),男,西安电子科技大学硕士研究生,E-mail:[email protected];" ]
[ "高新波(1972—),男,教授,博士,E-mail:[email protected];" ]
[ "陈玮铭(1997—),男,西安电子科技大学硕士研究生,E-mail:[email protected]" ]
扫 描 看 全 文
韩冰, 高路, 高新波, 等. 边界加权的甲状腺癌病理图像细胞核分割方法[J]. 西安电子科技大学学报, 2023,50(5):75-86.
韩冰, 高路, 高新波, 等. 边界加权的甲状腺癌病理图像细胞核分割方法[J]. 西安电子科技大学学报, 2023,50(5):75-86. DOI: 10.19665/j.issn1001-2400.20230501.
甲状腺癌是实体癌中发病率增速最快的恶性肿瘤之一,病理学诊断是医生诊断肿瘤的黄金标准,而细胞核分割是病理图像自动分析的关键步骤。针对细胞核分割中细胞核边界位置难以分割问题,设计了边界加权模块使网络在训练时更多关注细胞核边界。另一方面,为了避免网络过分关注边界而忽视细胞核主体部分,导致一些染色较浅的细胞核分割失败,提出了前景增强分割网络;该网络通过在上采样的过程中添加前景增强模块不断增强前景并抑制背景,从而实现细胞核精准分割。在自建的甲状腺癌病理图像分割数据集VIP-TCHis-Seg上的相似系数(Dice)和像素准确率(PA)两个指标分别约为85.26%和95.89%,在公共细胞核分割数据集MoNuSeg上的相似系数(Dice)和像素准确率(PA)两个指标分别约为81.03%和94.63%。上述实验结果表明,提出的边界加权和前景增强模块的方法能有效提高网络在边界处的分割准确率。
Thyroid cancer is one of the most rapidly growing malignancies among all solid cancers.Pathological diagnosis is the gold standard for doctors to diagnose tumors,and nuclear segmentation is a key step in the automatic analysis of pathological images.Aiming at the low segmentation performance of existing segmentation methods on the nuclear boundary of the cell nucleus in the thyroid carcinoma pathological image,we propose an improved U-Net method based on boundary weighting for nuclear segmentation.This method uses the designed boundary weighting module,which can make the segmentation network pay more attention to the boundary of the nuclear.At the same time,in order to avoid the proposed network paying too much attention to the boundary and ignoring the main part of the nucleus,which leads to the failure for some lightly stained nuclei segmentation,we design a segmentation network to enhance the foreground area and suppresses the background area in the upsampling stage.In addition,we build a dataset for nuclear segmentation of thyroid carcinoma pathologic images named VIP-TCHis-Seg dataset.Our method achieves the Dice coefficient(Dice) of 85.26% and the pixel accuracy(PA) of 95.89% on self-built TCHis-Seg dataset,and achieves the Dice coefficient(Dice) of 81.03% and the pixel accuracy(PA) of 94.63% on common dataset MoNuSeg.Experimental results show that our method can achieve the best performance on both Dice and PA as well as effectively improve the segmentation accuracy of the network at the boundary compared with other methods.
甲状腺乳头状癌图像分割UNet边界加权前景增强
papillary thyroid carcinomaimage segmentationUNetboundary weightingforeground enhancement
FITZMAURICE C, ALLEN C, BARBER R M, et al. Global,Regional,and National Cancer Incidence,Mortality,Years of Life Lost,Years Lived with Disability,and Disability-Adjusted Life-Years for 32 Cancer Groups,1990 to 2015:A Systematic Analysis for the Global Burden of Disease Study[J]. JAMA Oncology, 2017, 3(4):524-548. DOI:10.1001/jamaoncol.2016.5688http://doi.org/10.1001/jamaoncol.2016.5688http://oncology.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2016.5688http://oncology.jamanetwork.com/article.aspx?doi=10.1001/jamaoncol.2016.5688
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. DOI:10.1109/5.726791http://doi.org/10.1109/5.726791http://ieeexplore.ieee.org/document/726791/http://ieeexplore.ieee.org/document/726791/
RONNEBERGER O, FISCHER P, BROX T. U-Net:Convolutional Networks for Biomedical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Heidelberg:Springer, 2015:234-241.
ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++:A Nested U-Net Architecture for Medical Image Segmentation[C]//International Workshop on Deep Learning in Medical Image Analysis,Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Heidelberg:Springer, 2018:3-11.
HUANG H, LIN L, TONG R, et al. UNet 3+:A Full-Scale Connected UNet for Medical Image Segmentation[C]// IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP). Piscataway:IEEE, 2020:1055-1059.
ZHANG Z, LIU Q, WANG Y. Road Extraction by Deep Residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):749-753. DOI:10.1109/LGRS.2018.2802944http://doi.org/10.1109/LGRS.2018.2802944http://ieeexplore.ieee.org/document/8309343/http://ieeexplore.ieee.org/document/8309343/
JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUnet++:An Advanced Architecture for Medical Image Segmentation[C]// IEEE International Symposium on Multimedia (ISM). Piscataway:IEEE, 2019:225-230.
HU J, SHEN L, SUN G. Squeeze-and-Excitation Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7132-7141.
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking Atrous Convolution for Semantic Image Segmentation (2022)[J/OL].[2022-7-6]. https://arxiv.org/abs/1706.05587https://arxiv.org/abs/1706.05587https://arxiv.org/abs/1706.05587.
杨晓莉, 蔺素珍. 一种注意力机制的多波段图像特征级融合方法[J]. 西安电子科技大学学报, 2020, 47(1):120-127.
YANG Xiaoli, LIN Suzhen. Method for Multi-Band Image Feature-Level Fusion Based on the Attention Mechanism[J]. Journal of Xidian University, 2020, 47(1):120-127.
回海生, 张雪英, 吴泽林, 等. 一种主辅路径注意力补偿的脑卒中病灶分割方法[J]. 西安电子科技大学学报, 2021, 48(4):200-208.
HUI Haisheng, ZHANG Xueying, WU Zelin, et al. Method for Stroke Lesion Segmentation Using the Primary-Auxiliary Path Attention Compensation Network[J]. Journal of Xidian University, 2021, 48(4):200-208.
马思珂, 赵萌, 石凡, 等. 注意力驱动的细胞团簇细胞核分割算法[J]. 西安电子科技大学学报, 2022, 49(2):198-206.
MA Sike, ZHAO Meng, SHI Fan, et al. Attention Driven Nuclei Segmentation Method for Cell Clusters[J]. Journal of Xidian University, 2022, 49(2):198-206.
FU H, CHENG J, XU Y, et al. Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7):1597-1605. DOI:10.1109/TMI.2018.2791488http://doi.org/10.1109/TMI.2018.2791488
QIN X, ZHANG Z, HUANG C, et al. U2-Net:Going Deeper with Nested U-Structure for Salient Object Detection[J]. Pattern Recognition, 2020, 106:107404. DOI:10.1016/j.patcog.2020.107404http://doi.org/10.1016/j.patcog.2020.107404https://linkinghub.elsevier.com/retrieve/pii/S0031320320302077https://linkinghub.elsevier.com/retrieve/pii/S0031320320302077
GAO Y, ZHOU M, METAXAS D N. UTNet:A Hybrid Transformer Architecture for Medical Image Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Heidelberg:Springer, 2021:61-71.
VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[J]. Advancesin Neural Information Processing Systems, 2017,30.
WU T, TANG S, ZHANG R, et al. CGnet:A Light-Weight Context Guided Network for Semantic Segmentation[J]. IEEE Transactions on Image Processing, 2020, 30:1169-1179. DOI:10.1109/TIP.83http://doi.org/10.1109/TIP.83https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
CHEN H, QI X, YU L, et al. DCAN:Deep Contour-Aware Networks for Accurate Gland Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:2487-2496.
ZENG Z, XIE W, ZHANG Y, et al. RIC-Unet:An Improved Neural Network Based on UNet for Nuclei Segmentation in Histology Images[J]. IEEE Access, 2019, 7:21420-21428. DOI:10.1109/ACCESS.2019.2896920http://doi.org/10.1109/ACCESS.2019.2896920https://ieeexplore.ieee.org/document/8632907/https://ieeexplore.ieee.org/document/8632907/
ODA H, ROTH H R, CHIBA K, et al. BESNet:Boundary-Enhanced Segmentation of Cells in Histopathological Images[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Heidelberg:Springer, 2018:228-236.
ZHOU Y, ONDER O F, DOU Q, et al. CIA-Net:Robust Nuclei Instance Segmentation with Contour-Aware Information Aggregation[C]//International Conference on Information Processing in Medical Imaging. Heidelberg:Springer, 2019:682-693.
NAYLOR P, LAE M, REYAL F, et al. Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map[J]. IEEE Transactions on Medical Imaging, 2018, 38(2):448-459. DOI:10.1109/TMI.42http://doi.org/10.1109/TMI.42https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=42
CHENG F, CHEN C, WANG Y, et al. Learning Directional Feature Maps for Cardiac MRI Segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Heidelberg:Springer, 2020:108-117.
HAN B, ZHANG M, GAO X, et al. Automatic Classification Method of Thyroid Pathological Images Using Multiple Magnification Factors[J]. Neurocomputing, 2021, 460:231-242. DOI:10.1016/j.neucom.2021.07.024http://doi.org/10.1016/j.neucom.2021.07.024https://linkinghub.elsevier.com/retrieve/pii/S0925231221010687https://linkinghub.elsevier.com/retrieve/pii/S0925231221010687
RUSSELL B, TORRALBA A, MURPHY K, et al. LabelMe:a Database and Web-Based Tool for Image Annotation[J]. International Journal of Computer Vision, 2008, 77(1):157-173. DOI:10.1007/s11263-007-0090-8http://doi.org/10.1007/s11263-007-0090-8http://link.springer.com/10.1007/s11263-007-0090-8http://link.springer.com/10.1007/s11263-007-0090-8
KUMAR N, VERMA R, SHARMA S, et al. A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology[J]. IEEE Transactions on Medical Imaging, 2017, 36(7):1550-1560. DOI:10.1109/TMI.2017.2677499http://doi.org/10.1109/TMI.2017.2677499
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构