1. 桂林电子科技大学 信息与通信学院,广西壮族自治区 桂林 541004
2. 桂林电子科技大学 卫星导航定位与位置服务国家地方联合工程研究中心,广西壮族自治区 桂林 541004
3. 桂林电子科技大学 广西无线宽带通信与信号处理重点实验室,广西壮族自治区 桂林 541004
[ "蔡明娇(1997—),女,桂林电子科技大学硕士研究生,E-mail:[email protected]; " ]
[ "蒋俊正(1983—),男,教授,E-mail:[email protected]; " ]
[ "蔡万源(1998—),男,桂林电子科技大学硕士研究生,E-mail:[email protected]" ]
周 芳(1984—),女,副教授,E-mail:[email protected]
纸质出版日期:2024-4-20,
网络出版日期:2023-9-6,
收稿日期:2023-2-23,
扫 描 看 全 文
蔡明娇, 蒋俊正, 蔡万源, 等. 张量分解和自适应图全变分的高光谱图像去噪[J]. 西安电子科技大学学报, 2024,51(2):157-169.
Mingjiao CAI, Junzheng JIANG, Wanyuan CAI, et al. Hyperspectral image denoising based on tensor decomposition and adaptive weight graph total variation[J]. Journal of Xidian University, 2024,51(2):157-169.
蔡明娇, 蒋俊正, 蔡万源, 等. 张量分解和自适应图全变分的高光谱图像去噪[J]. 西安电子科技大学学报, 2024,51(2):157-169. DOI: 10.19665/j.issn1001-2400.20230412.
Mingjiao CAI, Junzheng JIANG, Wanyuan CAI, et al. Hyperspectral image denoising based on tensor decomposition and adaptive weight graph total variation[J]. Journal of Xidian University, 2024,51(2):157-169. DOI: 10.19665/j.issn1001-2400.20230412.
高光谱图像在采集过程中受到观测条件、成像仪材料属性、传输条件等客观因素的影响
不可避免地会引入各种噪声。这严重降低了高光谱图像的质量以及限制了后续处理的精度。因此
高光谱图像去噪是一个极其重要的预处理步骤。针对高光谱图像去噪问题
提出了低秩张量分解和自适应图全变分的高光谱图像去噪算法。首先
利用低秩张量分解来描述高光谱图像的全局空间和光谱相关性
并使用自适应权重图全变分来刻画高光谱图像空间维度上的分段平滑特性和保留高光谱图像的边缘信息;此外
采用
l
1
-范数、Frobenius-范数分别刻画包括条纹噪声、脉冲噪声、死线噪声在内的稀疏噪声和高斯噪声。由此高光谱图像去噪问题归结为一个包含低秩张量分解和自适应图全变分的约束优化问题。利用增广拉格朗日乘子法对该优化问题进行交替求解。实验结果表明
所提出的高光谱图像去噪算法与现有的算法相比
能够充分刻画高光谱图像数据的内在结构特性
具有更好的去噪性能。
During the acquisition process of hyperspectral images
various noises are inevitably introduced due to the influence of objective factors such as observation conditions
material properties of the imager
and transmission conditions
which severely reduces the quality of hyperspectral images and limits the accuracy of subsequent processing.Therefore
denoising of hyperspectral images is an extremely important preprocessing step.For the hyperspectral image denoising problem
a denoising algorithm
which is based on low-rank tensor decomposition and adaptive weight graph total variation regularization named LRTDGTV
is proposed in this paper.Specifically
Low-rank tensor decomposition is used to cha
racterize the global correlation among all bands
and adaptive weight graph total variation regularization is adopted to characterize piecewise smoothness property of hyperspectral images in the spatial domain and preserve the edge information of hyperspectral images.In addition
sparse noise
including stripe noise
impulse noise and deadline noise
and Gaussian noise are characterized by l
1
-norm and Frobenius-norm
respectively.Thus
the denoising problem can be formulated into a constrained optimization problem involving low-rank tensor decomposition and adaptive weight graph total variation regularization
which can be solved by employing the augmented Lagrange multiplier(ALM) method.Experimental results show that the proposed hyperspectral image denoising algorithm can fully characterize the inherent structural characteristics of hyperspectral images data and has a better denoising performance than the existing algorithms.
高光谱图像去噪Tucker分解自适应图全变分
hyperspectral image denoisingtucker decompositionadaptive weight graph total variation
HE W, ZHANG H Y, ZHANG L P, et al. Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):178-188.
HE C, SUN L, HUANG W, et al. TSLRLN:Tensor Subspace Low-Rank Learning with Non-Local Prior for Hyperspectral Image Mixed Denoising[J]. Signal Processing, 2021, 184(2):108060.
CHEN Y, HUANG T Z, HE W, et al. Hyperspectral Image Denoising Using Factor Group Sparsity-Regularized Nonconvex Low-Rank Approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(5515916):1-16.
曾海金, 蒋家伟, 赵佳佳, 等. L1-2空谱全变差正则化下的高光谱图像去噪[J]. 光子学报, 2019, 48(10):214-228.
ZENG Haijin, JIANG Jiawei, ZHAO Jiajia, et al. L1-2 Spectral-Spatial Total Variation Regularized Hyperspectral Image Denoising[J]. Acta Photonica Sinica, 2019, 48(10):214-228.
WANG Y, PENG J J, ZHAO Q, et al. Hyperspectral Image Restoration Via Total Variation Regularized Low-Rank Tensor Decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(4):1227-1243.
ELAD M, AHARON M. Image Denoising Via Sparse and Redundant Representations over Learned Dictionaries[J]. IEEE Transactions on Image Processing, 2006, 15(12):3736-3745. DOI:10.1109/tip.2006.881969http://doi.org/10.1109/tip.2006.881969
JIANG H Y, CHENG Z Y, HUO Y, et al. Research on Image Denoising Methods Based on Wavelet Transform and Rolling-Ball Algorithm[C]//2007 International Conference on Wavelet Analysis and Pattern Recognition. Piscataway:IEEE, 2007: 1604-1607.
DABOV K, FOI A, KATKOVNIK V, et al. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. DOI:10.1109/tip.2007.901238http://doi.org/10.1109/tip.2007.901238
ZHANG H Y. Hyperspectral Image Denoising with Cubic Total Variation Model[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2012,I-7:95-98.
OTHMAN H, QIAN S E. Noise Reduction of Hyperspectral Imagery Using Hybrid Spatial-Spectral Derivative-Domain Wavelet Shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):397-408.
ZHANG H Y, HE W, ZHANG L P, et al. Hyperspectral Image Restoration Using Low-Rank Matrix Recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4729-4743.
CAI W Y, JIANG J Z, OUYANG S. Hyperspectral Image Denoising Using Adaptive Weight Graph Total Variation Regularization and Low-Rank Matrix Recovery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19(5509805):1-5.
陈俊杰, 邓洪高, 马谋, 等. GCN-GRU:一种无线传感器网络故障检测模型[J]. 西安电子科技大学学报, 2022, 49(5):60-67.
CHEN Junjie, DENG Honggao, MA Mou, et al. GRN-GRU:A Fault Detection Model for Wireless Sensor Networks[J]. Journal of Xidian University, 2022, 49(5):60-67.
徐莎莎, 周芳, 李杨剑, 等. 一种新的传感器节点分布式定位算法[J]. 西安电子科技大学学报, 2022, 49(2):89-96.
XU Shasha, ZHOU Fang, LI Yangjian, et al. New Distributed Positioning Algorithm for Sensor Nodes[J]. Journal of Xidian University, 2022, 49(2):89-96.
JIANG J Z, FENG H R, TAY D B, et al. Theory and Design of Joint Time-Vertex Nonsubsampled Filter Banks[J]. IEEE Transactions on Signal Processing, 2021,69:1968-1982.
LIU M J, WEI Y. Image Denoising Using Graph-Based Frequency Domain Low-Pass Filtering[C]//2019 IEEE 4th International Conference on Image,Vision and Computing(ICIVC). Piscataway:IEEE, 2019: 118-122.
ZHANG Y, HAN X Y, ZHANG H, et al. Edge Detection Algorithm of Image Fusion Based on Improved Sobel Operator[C]//2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference(ITOEC). Piscataway:IEEE, 2017: 457-461.
李健, 吕倩. 高光谱图像噪声分析与降噪模型概述[J]. 现代信息科技, 2019, 3(2):23-24.
LI Jian, LV Qian. Overview of Noise Analysis and Noise Reduction Models for Hyperspectral Images[J]. Modern Information Technology, 2019, 3(2):23-24.
BRCK A, TEBOULLE M. Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems[J]. IEEE Transactions on Image Processing, 2009, 18(11):2419-2434. DOI:10.1109/TIP.2009.2028250http://doi.org/10.1109/TIP.2009.2028250
ZHUANG L N, FU X, NG M K, et al. Hyperspectral Image Denoising Based on Global and Nonlocal Low-Rank Factorizations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10438-10454.
HE W, YAO Q M, LI C, et al. Non-Local Meets Global:An Iterative Paradigm for Hyperspectral Image Restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4):2089-2107.
RASTI B, ULFARSSON M O, SVEINSSON J R. Hyperspectral Subspace Identification Using SURE[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2481-2485.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构