1. 西安电子科技大学 雷达信号处理全国重点实验室,陕西 西安 710071
2. 南京电子研究所,江苏 南京 210039
[ "申露(1995—),男,西安电子科技大学博士研究生,E-mail:[email protected]; " ]
苏洪涛(1974—),男,教授,E-mail:[email protected]
[ "汪晋(1985—),男,西安电子科技大学博士研究生,E-mail:[email protected];" ]
[ "毛智(1997—),男,西安电子科技大学博士研究生,E-mail:[email protected];" ]
[ "景鑫琛(1997—),男,西安电子科技大学博士研究生,E-mail:[email protected];" ]
[ "李泽(1992—),女,西安电子科技大学博士研究生,E-mail:[email protected]." ]
纸质出版日期:2024-1-20,
网络出版日期:2023-5-17,
收稿日期:2022-10-25,
扫 描 看 全 文
申露, 苏洪涛, 汪晋, 等. 基于注意力自相关机制的剩余杂波抑制方法[J]. 西安电子科技大学学报, 2024,51(1):41-51.
Lu SHEN, Hongtao SU, Jin WANG, et al. Attention autocorrelation mechanism-based residual clutter suppression method[J]. Journal of Xidian University, 2024,51(1):41-51.
申露, 苏洪涛, 汪晋, 等. 基于注意力自相关机制的剩余杂波抑制方法[J]. 西安电子科技大学学报, 2024,51(1):41-51. DOI: 10.19665/j.issn1001-2400.20230402.
Lu SHEN, Hongtao SU, Jin WANG, et al. Attention autocorrelation mechanism-based residual clutter suppression method[J]. Journal of Xidian University, 2024,51(1):41-51. DOI: 10.19665/j.issn1001-2400.20230402.
雷达工作时面临着复杂多变的环境
杂波特性经常呈现非均匀性和时变性。未被完全抑制的杂波剩余可能会产生大量虚警
进而导致虚假航迹产生或目标跟踪精度降低。在严重情况下
这些虚警还可能使雷达数据处理系统饱和
影响雷达系统的探测能力。传统的剩余杂波抑制算法需要进行特征提取和构建分类器两个步骤
存在泛化能力差、特征组合难和分类器要求高等问题。为解决这些问题
受到自注意力机制和领域知识的启发
提出了一种数据与知识双驱动的注意力自相关机制。该机制可以有效提取用于区分目标和杂波的雷达回波相互关系的深度特征。同时
基于该机制
构建了一种剩余杂波抑制方法
充分利用雷达回波特征
提高了算法在剩余杂波抑制方面的性能。仿真和实测数据处理结果表明
该方法在剩余杂波抑制方面具有显著的性能优势和泛化能力。此外
该方法的并行计算结构可以提高算法的运行效率。
Radar systems are subject to an ever-changing and complex environment that creates a non-uniform and time-varying clutter.The unsuppressed residual clutter can produce a significant number of false alarms
leading to a degraded target tracking performance
spurious trajectories creation
or saturation data processing systems
which in turn decreases the detection ability of the radar system.Conventional residual clutter suppression algorithms typically require feature extraction and classifier construction.These steps can result in poor generalization capability
difficulty in feature combination
and high requirements for the classifier.To address these issues
inspired by self-attention mechanisms and domain knowledge
this paper proposes a data- and knowledge-driven attention autocorrelation mechanism
which can effectively extract deep features of the radar echo to distinguish between targets and clutter
on the basis of which a residual clutter suppression method is constructed using the attention autocorrelation mechanism
which makes full use of the radar echo feature
thereby improving the residual clutter suppression capability.Simulation and measurement results demonstrate that this method has advantages of a significant performance and generalization capability for residual clutter suppression.Additionally
its parallel computing structure enhances the operational efficiency of the algorithm.
剩余杂波抑制注意力自相关机制深层特征神经网络
residual clutter suppressionattention autocorrelation mechanismdeep-featuresneural networks
ROSENBERG L. Parametric Modeling of Sea Clutter Doppler Spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:1-9.
刘俊, 刘瑜, 何友, 等. 杂波环境下基于全邻模糊聚类的联合概率数据互联算法[J]. 电子与信息学报, 2016, 38(6) :1438-1445.
LIU Jun, LIU Yu, HE You, et al. Joint Probabilistic Data Association Algorithm Based on All-Neighbor Fuzzy Clustering in Clutter[J]. Journal of Electronics & Information Technology, 2016, 38(6):1438-1445.
段崇棣, 韩超垒, 杨志伟, 等. 一种杂波分类辅助的近海岸模糊杂波抑制方法[J]. 西安电子科技大学学报, 2021, 48(2):64-71.
DUAN Chongdi, HAN Chaolei, YANG Zhiwei, et al. Inshore Ambiguity Clutter Suppression Method Aided by Clutter Classification[J]. Journal of Xidian University, 2021, 48(2):64-71.
LI H, REN J, HAN J, et al. Ground Clutter Suppression Method Based on FNN for Dual-Polarization Weather Radar[J]. The Journal of Engineering, 2019, 2019(19):6043-6047.
罗忠涛, 严美慧, 卢琨, 等. 超视距雷达海杂波与干扰信号的多域特征与海杂波检测[J]. 电子与信息学报, 2021, 43(3):580-588.
LUO Zhongtao, YAN Meihui, LU Kun, et al. The Characteristics of Sea-Clutter and Interferences in Various Domains and the Detection of Sea-Clutter for Over-The-Horizon Radar[J]. Journal of Electronics & Information Technology, 2021, 43(3):580-588.
GU J, WANG Z, KUEN J, et al. Recent Advances in Convolutional Neural Networks[J]. Pattern recognition, 2018, 77:354-377.
XU S, RU H, LI D, et al. Marine Radar Small Target Classification Based on Block-Whitened Time-Frequency Spectrogram and Pre-Trained CNN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-11.
BACHMANN S M. Phase-Based Clutter Identification in Spectra of Weather Radar Signals[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):487-491.
RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill Education, 2014.
VASWANI A, SHAZEER N, PARMAR N, et al. Attention Is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017:6000-6010.
DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-Training of Deep Bidirectional Transformers for Language Understanding(2018)[J/OL].[2018-10-11].https://arxiv.org/abs/1810.04805v2. https://arxiv.org/abs/1810.04805v2https://arxiv.org/abs/1810.04805v2
MIKOLOV T, KOMBRINK S, BURGET L, et al. Extensions of Recurrent Neural Network Language Model[C]//IEEE International Conference on Acoustics,Speech and Signal Processing. Piscataway:IEEE, 2011:5528-5531.
LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553):436-444.
MAAS A L, HANNUN A Y, NG A Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models[C]//International Conference on Machine Learning. Atlanta:JMLR, 2013:1-6.
GLOROT X, BORDES A, BENGIO Y. Deep Sparse Rectifier Neural Networks[J]. Journal of Machine Learning Research, 2011, 15:315-323.
NING Q. On the Momentum Term in Gradient Descent Learning Algorithms[J]. Neural Network, 1999, 12(1):145-151.
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM:Visual Explanations from Deep Networks via Gradient-Based Localization[J]. International Journal of Computer Vision, 2020, 128(2):336-359.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构