西安电子科技大学 电子工程学院,陕西 西安 710071
[ "李翠芸(1976—),女,副教授,博士,E-mail:[email protected];" ]
[ "衡博文(1998—),男,西安电子科技大学硕士研究生,E-mail:[email protected];" ]
[ "谢金池(1997—),男,西安电子科技大学硕士研究生,E-mail:[email protected]" ]
扫 描 看 全 文
李翠芸, 衡博文, 谢金池. 模糊推理优化的抗遮挡PMBM跟踪算法[J]. 西安电子科技大学学报, 2023,50(5):54-64.
李翠芸, 衡博文, 谢金池. 模糊推理优化的抗遮挡PMBM跟踪算法[J]. 西安电子科技大学学报, 2023,50(5):54-64. DOI: 10.19665/j.issn1001-2400.20230401.
目标遮挡是多扩展目标跟踪中的常见问题,当目标之间的距离较近或传感器的扫描范围内存在未知障碍物时,就会出现目标被部分或全部遮挡的现象,从而导致对目标的漏估。针对现有的泊松多伯努利混合滤波算法在遮挡场景下不能稳定跟踪的问题,提出了融入模糊推理的高斯过程-泊松多伯努利混合滤波算法。首先,在随机集目标跟踪框架下根据不同的遮挡场景给出了对应的扩展目标遮挡模型;在此基础上对高斯过程-泊松多伯努利混合滤波器的状态空间进行扩维,通过加入可变检测概率的方式将遮挡对目标状态的影响考虑到算法滤波步骤中;最后构建了可以估计目标遮挡概率的模糊推理系统,并将其与高斯过程-泊松多伯努利混合滤波算法结合,借助模糊系统的描述能力和泊松多伯努利混合滤波器良好的跟踪性能,实现遮挡场景下对目标的准确估计。仿真实验结果表明,所提算法在目标遮挡场景下的跟踪性能优于现有的泊松多伯努利混合滤波算法。
Target occlusion is a common problem in multiple extended target tracking.When the distance between targets is close or there are unknown obstacles within the scanning range of the sensor,the phenomenon of partial or complete occlusion of the target will occur,resulting in underestimation of the target quantity.Aiming at the problem that the existing Poisson multi-Bernoulli mixture(PMBM) filtering algorithms cannot perform stable tracking in occlusion scenarios,this paper proposes a GP-PMBM algorithm incorporating fuzzy inference.First,based on the random set target tracking framework,the corresponding extended target occlusion model is given according to different occlusion scenarios.On this basis,the state space of the GP-PMBM filter is expanded,and the influence of occlusion on the target state is taken into account in the filtering steps of the algorithm by adding variable detection probability.Finally,a fuzzy inference system that can estimate the target occlusion probability is constructed and combined with the GP-PMBM algorithm,and the accurate estimation of the target in occlusion scenarios is achieved with the help of the description ability of the fuzzy system and the good tracking performance of the PMBM filter.Simulation results show that the tracking performance of the proposed algorithm in target occlusion scenarios is better than that of the existing PMBM filtering algorithms.
泊松多伯努利混合滤波模糊推理遮挡场景目标跟踪
poisson multi-Bernoulli mixture filteringfuzzy inferenceocclusion scenariotarget tracking
BLACKMAN S S. Multiple Hypothesis Tracking for Multiple Target Tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1):5-18. DOI:10.1109/MAES.2004.1263228http://doi.org/10.1109/MAES.2004.1263228http://ieeexplore.ieee.org/document/1263228/http://ieeexplore.ieee.org/document/1263228/
张逸宸, 水鹏朗. 一种改进的泊松点过程概率多假设跟踪方法[J]. 西安电子科技大学学报, 2021, 48(2):27-34.
ZHANG Yichen, SHUI Penglang. Improved Probabilistic Multi-Hypothesis Tracker Via the Poisson Point Process[J]. Journal of Xidian University, 2021, 48(2):27-34.
MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Norwood: Artech House, 2007.
王明杰, 姬红兵, 刘龙. 噪声野值下的学生t分布混合CPHD滤波[J]. 西安电子科技大学学报, 2019, 46(5):134-141.
WANG Mingjie, JI Hongbing, LIU Long. Student’s t Distribution Mixture CPHD Filter with Noise Outliers[J]. Journal of Xidian University, 2019, 46(5):134-141.
李翠芸, 李洋, 姬红兵, 等. 一步数据关联GLMB扩展目标跟踪算法[J]. 西安电子科技大学学报, 2020, 47(5):137-143.
LI Cuiyun, LI Yang, JI Hongbing, et al. GLMB Extended Target Tracking Based on One-Step Data Association[J]. Journal of Xidian University, 2020, 47(5):137-143.
GARCÍA-FERNÁNDEZ Á F, WILLIAMS J L, GRANSTRÖM K, et al. Poisson Multi-Bernoulli Mixture Filter:Direct Derivation and Implementation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4):1883-1901. DOI:10.1109/TAES.2018.2805153http://doi.org/10.1109/TAES.2018.2805153https://ieeexplore.ieee.org/document/8289337/https://ieeexplore.ieee.org/document/8289337/
SAHU S, ADHIKARI G, DEY R K. Tracking of Object with Occlusion Based on Normalized Cross Correlation and Kalman Filter Estimation[C]//2021 2nd International Conference on Range Technology (ICORT).Piscataway:IEEE, 2021:1-5.
GUAN F, WANG Z, ZHANG X, et al. An Improved Tracking Algorithm for Occlusion Problem Based on STAPLE[C]//2020 13th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics (CISP-BMEI).Piscataway:IEEE, 2020:1-6.
LAMARD L, CHAPUIS R, BOYER J P. CPHD Filter Addressing Occlusions with Pedestrians and Vehicles Tracking[C]//2013 IEEE Intelligent Vehicles Symposium (IV).Piscataway:IEEE, 2013:1125-1130.
DAI K, WANG Y, HU J S, et al. Intertarget Occlusion Handling in Multiextended Target Tracking Based on Labeled Multi-Bernoulli Filter Using Laser Range Finder[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4):1719-1728. DOI:10.1109/TMECH.3516http://doi.org/10.1109/TMECH.3516https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3516https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3516
GRANSTROM K, ORGUNER U. A PHD Filter for Tracking Multiple Extended Targets Using Random Matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(11):5657-5671. DOI:10.1109/TSP.2012.2212888http://doi.org/10.1109/TSP.2012.2212888http://ieeexplore.ieee.org/document/6266759/http://ieeexplore.ieee.org/document/6266759/
何剑龙. 复杂环境下基于PMBM滤波器的扩展目标跟踪算法研究[D]. 西安: 西安电子科技大学, 2020.
ALCALÁ-FDEZ J, ALONSO J M. A Survey of Fuzzy Systems Software:Taxonomy,Current Research Trends,and Prospects[J]. IEEE Transactions on Fuzzy Systems, 2015, 24(1):40-56. DOI:10.1109/TFUZZ.2015.2426212http://doi.org/10.1109/TFUZZ.2015.2426212https://ieeexplore.ieee.org/document/7094263/https://ieeexplore.ieee.org/document/7094263/
LI L, ZHAN X. A Novel Data Association Algorithm Based on Fuzzy Logic for Visual Object Tracking[C]//2019 12th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics (CISP-BMEI).Piscataway:IEEE, 2019:1-6.
ROHILLA R, DEHIYA V, KAPOOR R. Targeted Surveillance System for Highly Maneuverable Objects Using Fuzzy Kalman Filter[C]//2014 9th International Conference on Industrial and Information Systems (ICIIS).Piscataway:IEEE, 2014:1-5.
MAATOUG K, NJAH M, JALLOULI M. Electric Wheelchair Trajectory Tracking Control Based on Fuzzy Logic Controller[C]//2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA).Piscataway:IEEE, 2019:191-195.
WAHLSTRÖM N, ÖZKAN E. Extended Target Tracking Using Gaussian Processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16):4165-4178. DOI:10.1109/TSP.2015.2424194http://doi.org/10.1109/TSP.2015.2424194http://ieeexplore.ieee.org/document/7088657/http://ieeexplore.ieee.org/document/7088657/
GRANSTRÖM K, FATEMI M, SVENSSON L. Gamma Gaussian Inverse-Wishart Poisson Multi-Bernoulli Filter for Extended Target Tracking[C]//2016 19th International Conference on Information Fusion (FUSION).Piscataway:IEEE, 2016:893-900.
SCHEEL A, GRANSTRÖM K, MEISSNER D, et al. Tracking and Data Segmentation Using a GGIW Filter with Mixture Clustering[C]//17th International Conference on Information Fusion (FUSION). Piscataway:IEEE, 2014:1-8.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构