1. 中国民航大学 安全科学与工程学院,天津 300300
2. 中国民航大学 计算机科学与技术学院,天津 300300
[ "姜来为(1986—),女,讲师,E-mail:[email protected];" ]
[ "陈正(1999—),男,中国民航大学硕士研究生,E-mail:[email protected]; " ]
[ "杨宏宇(1969—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-1-20,
网络出版日期:2023-9-6,
收稿日期:2023-1-8,
扫 描 看 全 文
姜来为, 陈正, 杨宏宇. 高动态复杂场景下航空自组网路由协议研究[J]. 西安电子科技大学学报, 2024,51(1):72-85.
Laiwei JIANG, Zheng CHEN, Hongyu YANG. Research on aviation ad hoc network routing protocols in highly dynamic and complex scenarios[J]. Journal of Xidian University, 2024,51(1):72-85.
姜来为, 陈正, 杨宏宇. 高动态复杂场景下航空自组网路由协议研究[J]. 西安电子科技大学学报, 2024,51(1):72-85. DOI: 10.19665/j.issn1001-2400.20230313.
Laiwei JIANG, Zheng CHEN, Hongyu YANG. Research on aviation ad hoc network routing protocols in highly dynamic and complex scenarios[J]. Journal of Xidian University, 2024,51(1):72-85. DOI: 10.19665/j.issn1001-2400.20230313.
随着航空运输规模的迅速增长
以民航飞机为主的航空自组网通信已经具备通信组网覆盖的基础。能否找到一种有效手段将高动态不确定复杂场景下航空器节点重要数据传输并安全备份
是提高空天地一体化系统可靠性和管理能力的重要措施。然而
航空自组网所具备的网络拓扑结构高动态变化、网络跨度大和网络链路不稳定等特点
给航空自组网网络协议设计
尤其是路由协议设计带来了严峻考验。为了便于未来在航空自组网路由协议设计方面开展深入研究
对航空自组网路由协议设计相关要求进行了全面的分析并对现有的路由协议进行了全面的调研。首先根据航空自组网的特点分析了航空自组网路由协议设计所需要考虑的因素、面临的挑战以及设计原则;然后
根据现有路由协议设计特点
对国内外已有航空自组网路由协议进行了分类综述与分析;最后
探讨了未来航空自组网路由协议设计的研究重点
为推动我国下一代空天地一体化网络研究提供了参考。
With the rapid enlargement of the air transportation scale
the aviation ad hoc network(AANET) communication based on the civil aviation aircraft has possessed the capacities of communication network coverage.To find an effective means of important data transmission of aircraft nodes in highly dynamic and uncertain complex scenarios and backup them safely has become more important for improving the reliability and management abilities of the air-space-ground integrated network.However
the characteristics of the AANET
such as high dynamic change of network topology
large network span
and unstable network links
have brought severe challenges to the design of AANET protocols
especially the routing protocols.In order to facilitate the future research on the design of AANET routing protocols
this paper comprehensively analyzes the relevant requirements of AANET routing protocol design and investigates the existing routing protocols.First
according to characteristics of the AANET
this paper analyzes the factors
challenges
and design principles that need to be considered in the design of the routing protocols.Then
according to the design characteristics of existing routing protocols
this paper classifies and analyzes the existing routing protocols of the AANET.Finally
the future research focus of the routing protocols for the AANET is analyzed
so as to provide reference for promoting the research on the next generation of the air-space-ground integrated network in China.
高动态复杂场景航空自组网路由协议数据传输
highly dynamic and complex scenariosaviation ad hoc networkrouting protocolsdata transmission
VEY Q, PIROVANO A, RADZIK J, et al. Aeronautical Ad Hoc Network for Civil Aviation[C]//International Workshop on Communication Technologies for Vehicles. Heidelberg:Springer, 2014:81-93.
BILEN T, AHMADI H, CANBERK B, et al. Aeronautical Networks for In-Flight Connectivity:A Tutorial of the State-of-the-Art and Survey of Research Challenges[J]. IEEE Access, 2022, 10:20053-20079.
崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11.
CUI Xinyu, WU Jie, ZHOU Yiqing, et al. Challenges of and Key Technologies for the Air-Space-Ground Integrated Network[J]. Journal of Xidian University, 2023, 50(1):1-11.
徐子蒙, 王博文, 云霄, 等. 灾后无人机不确定偏好序下稳定中继选择方法[J]. 西安电子科技大学学报, 2022, 49(6):32-41.
XU Zimeng, WANG Bowen, YUN Xiao, et al. Stable Relay Selection Method under an Uncertain Preference Ordinal for UAV in Post-Disaster[J]. Journal of Xidian University, 2022, 49(6):32-41.
ICAO. ICAO Annex 6:Operation of Aircraft, Part I-International Commercial Air Transport[S]. Montreal:ICAO, 2022.
ICAO. ICAO Doc 8126: Aeronautical Information Services Manual, Seventh Edition[S]. Montreal:ICAO, 2021.
FAA.FAA Doc 10150:Manual on the Functional Specifications for the Location of an Aircraft in Distress Repository(LADR)[S]. Washington D.C.:FAA, 2021.
杨章林, 谢钧, 张耕强. 基于定向天线的飞行自组网定向路由协议综述[J]. 计算机科学, 2021, 48(11):334-344.
YANG Zhanglin, XIE Jun, ZHANG Gengqiang. Review of Directional Routing Protocols for Flying Ad-Hoc Networks Based on Directional Antennas[J]. Computer Science, 2021, 48(11):334-344.
刘浩江, 王浩, 柳宁, 等. 高动态航空自组网中考虑优先级的逐跳路由协议[J]. 计算机应用研究, 2020, 37(6):1821-1825.
LIU Haojiang, WANG Hao, LIU Ning, et al. Hop by Hop Routing Protocol Considering Priority in High Dynamic Aviation Ad Hoc Networks[J]. Application Research of Computers, 2020, 37(6):1821-1825.
PERKINS C E, BHAGWAT P. Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers[J]. ACM SIGCOMM Computer Communication Review, 1994, 24(4):234-244.
JACQUET P.RFC3626:Optimized link state routing protocol(OLSR)[S]. New York: ACM, 2003.
ZHENG Y, WANG Y, LI Z, et al. A Mobility and Load Aware OLSR Routing Protocol for UAV Mobile Ad-Hoc Networks[C]// International Conference on Information & Communications Technologies(ICT 2014). Piscataway:IEEE, 2014:1-7.
ZHANG L, HU L, HU F, et al. Enhanced OLSR Routing for Airborne Networks with Multi-Beam Directional Antennas[J]. Ad Hoc Networks, 2020, 102:102-116.
KUMAR K, KASHYAP P K, KUMAR S. Aeronautical Assisted IoT Implementation:Route Lifetime and Load Capacity Perspective[C]//International Conference on Application of Computing and Communication Technologies. Heidelberg:Springer, 2018:162-172.
LUO Q, WANG J. Multiple QoS Parameters-Based Routing for Civil Aeronautical Ad Hoc Networks[J]. IEEE Internet of Things Journal, 2017, 4(3):804-814.
JHONSON D.The Dynamic Source Routing Protocol(DSR) for Mobile Ad Hoc Networks for IPv4[S]. Wilmington:IETF, 2007.
SAKHAEE E, JAMALIPOUR A, KATO N. Multipath Doppler Routing with QoS Support in Pseudo-Linear Highly Mobile Ad Hoc Networks[C]//2006 IEEE International Conference on Communications. Piscataway:IEEE, 2006, 8:3566-3571.
PERKINS C, BELDING-ROYER E, DAS S.RFC3561:Ad Hoc on Demand Distance Vector(AODV) Routing[S]. New York: ACM, 2003.
LEI L, WANG D, ZHOU L, et al. Link Availability Estimation Based Reliable Routing for Aeronautical Ad Hoc Networks[J]. Ad Hoc Networks, 2014, 20:53-63.
ZHOU J, LEI L, LIU W, et al. A Simulation Analysis of Nodes Mobility and Traffic Load Aware Routing Strategy in Aeronautical Ad Hoc Networks[C]//Proceedings of 2012 9th International Bhurban Conference on Applied Sciences & Technology(IBCAST). Piscataway:IEEE, 2012:423-426.
HAAS Z, PERLMAN M, SAMAR P. The Zone Routing Protocol(ZRP) for Ad Hoc Networks[J]. IETF Mobile Ad-hoc Network(MANET) Working Group 98, 2002, 34(2):108.
DONG Z, WANG Y, ZHU Y, et al. An Aeronautical Ad Hoc Network Routing Protocol Based on Air Vehicles Movement Features[C]// 2016 22nd International Conference on Applied Electromagnetics and Communications(ICECOM).Piscataway:IEEE, 2016:1-6.
KARP B, GREED Y. Perimeter Stateless Routing for Wireless Networks[C]// MOBICOM 2000:Proceedings.6th Annual ACM/IEEE International Conference on Mobile Computing and Networking. New York: ACM, 2000:243-254.
MEDINA D, HOFFMANN F, ROSSETTO F, et al. A Geographic Routing Strategy for North Atlantic in-Flight Internet Access Via Airborne Mesh Networking[J]. IEEE/ACM Transactions on Networking, 2011, 20(4):1231-1244.
WANG S, FAN C, DENG C, et al. A-GR:A Novel Geographical Routing Protocol for AANETs[J]. Journal of Systems Architecture, 2013, 59(10):931-937.
NEWTON B, AIKAT J, JEFFAY K. Geographic Routing in Extreme-Scale Highly-Dynamic Mobile Ad Hoc Networks[C]// 2016 IEEE 24th International Symposium on Modeling,Analysis and Simulation of Computer and Telecommunication Systems(MASCOTS). Piscataway:IEEE, 2016:205-210.
KO Y B, VAIDA N H. Location-Aided Routing(LAR) in Mobile Ad Hoc Networks[C]// Proceedings of the 4th annual ACM/IEEE International Conference on Mobile Computing and Networking. New York: ACM, 1998:66-75.
SAIFULLAH K, KIM K I. A New Geographical Routing Protocol for Heterogeneous Aircraft Ad Hoc Networks[C]// 2012 IEEE/AIAA 31st Digital Avionics Systems Conference(DASC). Piscataway:IEEE, 2012:4B5-1-4B5-9.
NICULESCU D, NATH B. Trajectory Based Forwarding and Its Applications[C]//ACM/IEEE International Conference on Mobile Computing and Networking. New York: ACM, 2003:260-272.
VEY Q, PUECHMOREL S, PIROVANO A, et al. Routing in Aeronautical Ad-Hoc Networks[C]//2016 IEEE/AIAA 35th Digital Avionics Systems Conference(DASC). Piscataway:IEEE, 2016:1-10.
JABBAR A. AERORP:A Geolocation Assisted Aeronautical Routing Protocol for Highly Dynamic Telemetry Environments[J]. International Telemetering Conference Proceedings, 2009, 45:1-10.
SHIRANI R, ST-HILAIRE M, KUNZ T, et al. On the Delay of Reactive-Greedy-Reactive Routing in Unmanned Aeronautical Ad-Hoc Networks[J]. Procedia Computer Science, 2012, 10:535-542.
BIOMO J D M M, KUNZ T, ST-HILAIRE M. Routing in Unmanned Aerial Ad Hoc Networks:Introducing a Route Reliability Criterion[C]// 2014 7th IFIP Wireless and Mobile Networking Conference(WMNC). Piscataway:IEEE, 2014:1-7.
BIOMO J D M M, KUNZ T, ST-HILAIRE M. Routing in Unmanned Aerial Ad Hoc Networks:A Recovery Strategy for Greedy Geographic Forwarding Failure[C]//2014 IEEE Wireless Communications and Networking Conference(WCNC). Piscataway:IEEE, 2014:2236-2241.
YANG J, SUN K, HE H, et al. Dynamic Virtual Topology Aided Networking and Routing for Aeronautical Ad-Hoc Networks[J]. IEEE Transactions on Communications, 2022, 70(7):4702-4716.
邵天竺, 王晓亮, 陈文龙, 等. 一种减少网络振动的智能路由选择算法设计[J]. 计算机研究与发展, 2021, 58(6):1261-1274.
SHO Tianzhu, WANG Xiaoliang, CHEN Wenlong, et al. Design of an Intelligent Routing Algorithm to Reduce Routing Flap[J]. Journal of Computer Research and Development, 2021, 58(6):1261-1274.
刘又僖. 远海通信无线异构网络基于机器学习的路由研究[D]. 成都: 电子科技大学, 2022.
HOFFMANN F, MEDINA D, WOLISZ A. Joint Routing and Scheduling in Mobile Aeronautical Ad Hoc Networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(6):2700-2712.
CUI J, YETGIN H, LIU D, et al. Twin-Component Near-Pareto Routing Optimization for AANETs in the North-Atlantic Region Relying on Real Flight Statistics[J]. IEEE Open Journal of Vehicular Technology, 2021, 2:346-364.
RAO Z, XU Y, PAN S. A Deep Learning-Based Constrained Intelligent Routing Method[J]. Peer-to-Peer Networking and Applications, 2021, 14(4):2224-2235.
LUONG D K, HU Y F, LI J P, et al. Deep Learning Approach for the Multilink Selection Problem in Avionic Networks[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference(DASC). Piscataway:IEEE, 2020:1-5.
LIU D, ZHANG J, CUI J, et al. Deep-Learning-Aided Packet Routing in Aeronautical Ad Hoc Networks Relying on Real Flight Data:From Single-Objective to Near-Pareto Multiobjective Optimization[J]. IEEE Internet of Things Journal, 2021, 9(6):4598-4614.
GURUMEKALA T, INDIRA GANDHI S. Toward in-Flight Wi-Fi:A Neuro-Fuzzy Based Routing Approach for Civil Aeronautical Ad hoc Network[J]. Soft Computing, 2022:1-22.
吕文凯, 杨鹏飞, 丁韵青, 等. JEDERL:一种异构计算平台任务调度优化算法[J]. 西安电子科技大学学报, 2021, 48(6):67-74.
LV Wenkai, YANG Pengfei, DING Yunqing, et al. JEDERL:A Task Scheduling Optimization Algorithm for Heterogeneous Computing Platforms[J]. Journal of Xidian University, 2021, 48(6):67-74.
XIAO Y, LI J, WU J, et al. On Design and Implementation of Reinforcement Learning Based Cognitive Routing for Autonomous Networks[J]. IEEE Communications Letters, 2023, 27(1):205-209.
LYU N, SONG G, YANG B, et al. QNGPSR:A Q-Network Enhanced Geographic Ad-Hoc Routing Protocol Based on GPSR[C]//2018 IEEE 88th Vehicular Technology Conference(VTC-Fall). Piscataway:IEEE, 2018:1-6.
LIU D, CUI J, ZHANG J, et al. Deep Reinforcement Learning Aided Packet-Routing for Aeronautical Ad-Hoc Networks Formed by Passenger Planes[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5):5166-5171.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构