1. 西安电子科技大学 电子工程学院,陕西 西安 710071
2. 国家无线电检测中心陕西监测站,陕西 西安710200
[ "王楠(1981—),男,副教授,E-mail:[email protected];" ]
[ "刘俊志(1997—),男,西安电子科技大学硕士研究生,E-mail:[email protected]; " ]
[ "陈贵齐(1992—),男,西安电子科技大学硕士研究生,E-mail:[email protected];" ]
[ "赵延安(1982—),男,高级工程师,E-mail:[email protected]; " ]
[ "张玉(1978—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-1-20,
网络出版日期:2023-8-30,
收稿日期:2022-11-22,
扫 描 看 全 文
王楠, 刘俊志, 陈贵齐, 等. 电大山区地物环境中电波传播的电磁计算[J]. 西安电子科技大学学报, 2024,51(1):21-28.
Nan WANG, Junzhi LIU, Guiqi CHEN, et al. Electromagnetic calculation of radio wave propagation in electrically large mountainous terrain environment[J]. Journal of Xidian University, 2024,51(1):21-28.
王楠, 刘俊志, 陈贵齐, 等. 电大山区地物环境中电波传播的电磁计算[J]. 西安电子科技大学学报, 2024,51(1):21-28. DOI: 10.19665/j.issn1001-2400.20230210.
Nan WANG, Junzhi LIU, Guiqi CHEN, et al. Electromagnetic calculation of radio wave propagation in electrically large mountainous terrain environment[J]. Journal of Xidian University, 2024,51(1):21-28. DOI: 10.19665/j.issn1001-2400.20230210.
在无人驾驶与无人机等新兴行业中
信号覆盖范围的要求较高
不仅仅在城市
在人迹罕至的山地、沙漠、森林中也需要无线信号的覆盖才能真正完成远程操控
这些地区更多需要考虑的是地势变化对电磁传播所带来的影响。计算电磁学中的一致性几何绕射理论方法是分析电大环境电磁问题的有效方法
使用计算电磁学的方法研究电磁波在山区地物环境中的传播规律。给出了一种建立不规则地形模型的新方法
可以通过数字高程的网格数据生成电磁算法可用的三次多项式曲面
使用多个立方曲面对不规则地形进行拼接
使用平均均方根误差验证模型数据的准确性。基于所得的地形数据
完成了并行的几何光学算法
并对区域电磁场的分布进行了仿真计算。选取了实际山区地物环境进行了实地测量
测量结果与仿真结果对比趋势一致
验证了该方法在非规则地形中电磁波传播分析中的有效性。考虑环境电磁计算的规模
建立了相应的并行策略
100核测试的并行效率可以保持在80%以上。
In emerging industries such as unmanned aerial vehicles and drones
the signal coverage requirements are high
not only in the city
but in the inaccessible mountains
deserts
and forests also wireless signal coverage is needed to truly complete remote control.These areas need to consider the impact of terrain changes on electromagnetic transmission.The Uniform Geometrical Theory of Diffraction method in Computational Electromagnetic is an effective method to analyze electromagnetic problems in electrically large environments and this paper uses the method of computational electromagnetics to study the propagation of electromagnetic waves in mountainous environments.A new method of constructing an irregular terrain model is presented.The available terrain data can be generated by the cubic surface algorithm
and the irregular terrain is spliced by multiple cubic surfaces.The accuracy of the model data is verified by the mean root mean square error.Based on the topographic data
a parallel 3D geometric optical algorithm is completed
and the distribution of the regional electromagnetic field is simulated.The actual mountain terrain environment is selected for field measurement
and the comparison trend between the measurement results and the simulation results is consistent
which verifies the effectiveness of the method in the analysis of electromagnetic wave propagation in the irregular terrain.Considering the scale of environmental electromagnetic computation
a parallel strategy is established
and the parallel efficiency of 100 cores test can be kept to be above 80%.
电大山区地物环境电波传播数字高程分形建模几何光学并行计算
electrically large mountainous terrain environmentradio wave propagationdigital elevation modelfractal modelinggeometric opticsparallel computing
杨超, 郭立新, 李宏强, 等. 大气波导中电波传播特性的研究[J]. 西安电子科技大学学报, 2009, 36(6):1097-1102.
YANG Chao, GUO Lixin, LI Hongqiang, et al. Study the Propagation Characteristic of Radio Wave in Atmospheric Duct[J]. Journal of Xidian University, 2009, 36(6):1097-1102.
李伟, 郑航, 钱肇钧, 等. 基于信道测量的3-6 GHz城市环境传播特性研究[J]. 南京邮电大学学报(自然科学版), 2016, 36(4):28-34.
LI Wei, ZHENG Hang, QIAN Zhaojun, et al. Measurement-Based Urban Propagation Characterization at 3-6 GHz[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2016, 36(4):28-34.
ROH W, SEOL J, PARK J, et al. Millimeter-Wave Beamforming as an Enabling Technology for 5G Cellular Communications:Theoretical Feasibility and Prototype Results[J]. IEEE Communications Magazine, 2014, 52(2):106-113.
KVICERA M, KORINEK T, KVICERA V, et al. Short-Term Terrain Diffraction Measurements From L- to Q-Band:Results and Analysis[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7):3693-3701.
GIOVANELI C L. An Analysis of Simplified Solutions for Multiple Knife-Edge Diffraction[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(3):297-301.
ORAIZI H, HOSSEINZADEH S. Radio-Wave-Propagation Modeling in the Presence of Multiple Knife Edges by the Bidirectional Parabolic-Equation Method[J]. IEEE Transactions on Vehicular Technology, 2007, 56(3):1033-1040.
APAYDIN G, SEVG L. A Novel Split-Step Parabolic-Equation Package for Surface-Wave Propagation Prediction Along Multiple Mixed Irregular-Terrain Paths[J]. IEEE Antennas and Propagation Magazine, 2010, 52(4):90-97.
翟畅, 林中朝, 赵勋旺, 等. 一种使用八叉树的半空间MLFMA区域分解算法[J]. 西安电子科技大学学报, 2021, 48(6):144-150.
ZHAI Chang, LIN Zhongchao, ZHAO Xunwang, et al. Algorithm for Half-Space MLFMA Domain Decomposition Utilizing an Octree[J]. Journal of Xidian University, 2021, 48(6):144-150.
赵斯晗, 魏兵, 何欣波. 局部特征值解的无条件稳定FDTD高效实施方案[J]. 西安电子科技大学学报, 2022, 49(1):188-193.
ZHAO Sihan, WEI Bing, HE Xinbo. Efficient Implementation of Unconditionally Stable FDTD with the Local Eigenvalue Solution[J]. Journal of Xidian University, 2022, 49(1):188-193.
孙宪钢, 魏兵, 石磊. 有耗对称介质层反射系数的快速计算[J]. 西安电子科技大学学报, 2021, 48(6):138-143.
SUN Xiangang, WEI Bing, SHI Lei. Fast Calculation of the Reflection Coefficient of the Lossy Symmetrical Dielectric Layer[J]. Journal of Xidian University, 2021, 48(6):138-143.
HUANG L, WU X P, LI Z H, et al. A Parallel FDTD/ADI-PE Method for Ultralarge-Scale Propagation Modeling of ILS Signal Analysis[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12):2245-2249.
FENG J, ZHOU L, XU X M. A Hybrid TDPE/FDTD Method for Site-Specific Modeling of O2I Radio Wave Propagation[J] IEEE Antennas and Wireless Propagation Letters, 2018, 17(9):1652-1655.
APAYDIN G, OZGUN O, KUZUOGLU M, et al. A Novel Two-Way Finite-Element Parabolic Equation Groundwave Propagation Tool:Tests with Canonical Structures and Calibration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 49(8):2887-2899.
PATHAK P H, GARLUCCIO G, ALBANI M. The Uniform Geometrical Theory of Diffraction and Some of Its Applications[J], IEEE Antennas and Propagation magazine, 2013, 55(4):41-69.
陆金文, 闫华, 殷红成, 等. 用于三维散射中心SBR建模的边缘绕射修正[J]. 西安电子科技大学学报, 2021, 48(2):117-124.
LU Jinwen, YAN Hua, YIN Hongcheng, et al. Edge Diffraction Correction for 3D Scattering Center Modeling Based on the Shooting and Bouncing Ray Technique[J]. Journal of Xidian University, 2021, 48(2):117-124.
ERRICOLO D, ELIA G D, USLENGHI P. Measurements on Scaled Models of Urban Environments and Comparisons with Ray-Tracing Propagation Simulation[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(5):727-735.
赵延安, 侯鹏, 王大鹏, 等. 2.5 GHz城市环境电磁态势的计算与补偿[J]. 微波学报, 2020, 36(2):94-97.
ZHAO Yan’an, HOU Peng, WANG Dapeng, et al. Calculation and Compensation in Urban Environment Electromagnetic Situation at 2.5 GHz[J]. Journal of Microwaves, 2020, 36(2):94-97.
ZHAN P, SONG C, LUO S, et al. Lake Level Reconstructed from DEM-Based Virtual Station:Comparison of Multisource DEMs with Laser Altimetry and UAV-LiDAR Measurements[J], IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.
刘艳阳, 李真芳, 杨娟娟, 等. 分布式卫星InSAR目标定位近似闭式解[J]. 西安电子科技大学学报, 2012, 39(4):87-93.
LIU Yanyang, LI Zhenfang, YANG Juanjuan, et al. Quasi-Closed-Form Solution for Distributed Satellites InSAR Geolocation[J]. Journal of Xidian University, 2012, 39(4):87-93.
YU Y, SAATCHI S, HEALTH L S, et al. Regional Distribution of Forest Height and Biomass from Multisensor Data Fusion[J] Journal of Geophysical Research Biogeosciences, 2010, 115(G2):1-16.
ZHANG Y, YAN G, BAI Y. Sensitivity of Topographic Correction to the DEM Spatial Scale[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(1):53-57.
SCHETTINO D N, MOREIRA F J, BORGES K L, et al. Novel Heuristic UTD Coefficients for the Characterization of Radio Channels[J]. IEEE Transactions on Magnetics, 2007, 43(4):1301-1304.
张玉, 王楠, 梁昌洪. PC集群MPI并行矩量法分析复杂平台多天线特性[J]. 电子学报, 2006, 34(3):478-482.
ZHANG Yu, WANG Nan, LIANG Changhong. Study of MPI Based Parallel MoM on PC Clusters for Multiple Antennas Mounted on Complex Platforms[J]. Acta Electronica Sinica, 2006, 34(3):478-482.
谭雯, 甘新标, 白皓, 等. 面向超级计算机系统的大规模图遍历优化[J]. 西安电子科技大学学报, 2021, 48(6):84-95.
TAN Wen, GAN Xinbiao, BAI Hao, et al. Optimization of Large-Scale Graph Traversal for Supercomputers[J]. Journal of Xidian University, 2021, 48(6):84-95.
李岷轩, 江树刚, 吴庆恺, 等. 非结构网格瞬态电磁场计算中的高效通信方法[J]. 西安电子科技大学学报, 2022, 49(4):16-23.
LI Minxuan, JIANG Shugang, WU Qingkai, et al. Efficient Communication Method for Transient Electromagnetic Field Computation on Unstructured Grids[J]. Journal of Xidian University, 2022, 49(4):16-23.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构