兰州交通大学 电子与信息工程学院,甘肃 兰州 730070
[ "陈永(1979—),男,教授,博士,E-mail:[email protected];" ]
[ "蒋丰源(1999—),男,兰州交通大学硕士研究生,E-mail:[email protected]" ]
纸质出版日期:2024-1-20,
网络出版日期:2023-8-22,
收稿日期:2022-10-10,
扫 描 看 全 文
陈永, 蒋丰源. 注意力去噪与复数LSTM的时变信道预测算法[J]. 西安电子科技大学学报, 2024,51(1):29-40.
Yong CHENG, Fengyuan JIANG. Time-varying channel prediction algorithm based on the attention denoising and complex LSTM network[J]. Journal of Xidian University, 2024,51(1):29-40.
陈永, 蒋丰源. 注意力去噪与复数LSTM的时变信道预测算法[J]. 西安电子科技大学学报, 2024,51(1):29-40. DOI: 10.19665/j.issn1001-2400.20230203.
Yong CHENG, Fengyuan JIANG. Time-varying channel prediction algorithm based on the attention denoising and complex LSTM network[J]. Journal of Xidian University, 2024,51(1):29-40. DOI: 10.19665/j.issn1001-2400.20230203.
随着无线通信技术的发展
高速场景下通信技术的研究也越来越广泛
其中获取到准确的信道状态信息对提升无线通信系统的性能具有重要的意义。针对正交频分复用系统在高速场景下
现有信道预测算法未考虑噪声影响及预测精度低的问题
提出了一种注意力去噪与复数卷积LSTM的时变信道预测算法。首先
设计了一种通道注意力信道去噪网络对信道状态信息进行去噪处理
降低了噪声对信道状态信息的影响。然后
提出了基于复数卷积层和长短期记忆网络的信道预测模型
对去噪后历史时刻的信道状态信息进行特征提取
并且对未来时刻的信道状态信息进行预测;改进后的LSTM预测模型增强了对信道时序特征的提取能力
提高了信道预测的精度。最后
结合Adam优化器对未来时刻信道状态信息进行预测输出。仿真结果表明:与对比算法相比
所提基于注意力去噪与复数卷积LSTM的时变信道预测算法对信道状态信息的预测精度更高
能够适用于高速移动场景下的时变信道预测。
With the development of wireless communication technology
the research on communication technology in high-speed scenario is becoming more and more extensive
one aspect of which is that obtaining accurate channel state information is of great significance to improving the performance of a wireless communication system.In order to solve the problem that the existing channel prediction algorithms for orthogonal Frequency Division multiplexing(OFDM) systems do not consider the influence of noise and the low prediction accuracy in high-speed scenarios
a time-varying channel prediction algorithm based on attention denoising and complex convolution LSTM is proposed.First
a channel attention channel denoising network is proposed to denoise the channel state information
which reduces the influence of noise on the channel state information.Second
a channel prediction model based on the complex convolutional layer and long short term memory(LSTM) is constructed.The channel state information at the historical moment after denoising is extracted
and then it is input into the channel prediction model to predict the channel state information at the future moment.The improved LSTM prediction model enhances the ability to extract channel timing features and improves the accuracy of channel prediction.Finally
the Adam optimizer is used to predict the channel state information at the future time.Simulation results show that the proposed time-varying channel prediction algorithm based on the attention denoising and complex convolutional LSTM network method has a higher prediction accuracy for the channel state information than the comparison algorithm.At the same time
the proposed method can be applied to the time-varying channel prediction in high-speed moving scenarios.
时变信道预测高速场景通道注意力去噪复数卷积长短期记忆网络正交频分复用
time-varying channel predictionhigh-speed scenariochannel attention denoisingcomplex convolution long short term memory networkorthogonal frequency division multiplexing
李中捷, 高伟, 熊吉源, 等. 采用DDPG的联合波束成形和功率控制算法[J]. 西安电子科技大学学报, 2022, 49(4):39-48.
LI Zhongjie, GAO Wei, XIONG Jiyuan, et al. DDPG Method for Joint Beamforming and Power Control in Mmwave Communication[J]. Journal of Xidian University, 2022, 49(4):39-48.
WANG R, RENAUDIN O, BAS C U, et al. On Channel Sounding with Switched Arrays in Fast Time-Varying Channels[J]. IEEE Transactions on Wireless Communications, 2019, 18(8):3843-3855.
GUAN K, HE D, AI B, et al. Channel Characterization and Capacity Analysis for THz Communication Enabled Smart Rail Mobility[J]. IEEE Transactions on Vehicular Technology, 2021, 70(5):4065-4080.
ZHANG R, AI B. A Novel Channel Prediction Method for MIMO-OFDM in High-Speed Environment[J]. IET Communications, 2021, 15(13):1723-1732.
MOSAVAT-JAHROMI H, LI Y, CAI L, et al. Prediction and Modeling of Spectrum Occupancy for Dynamic Spectrum Access Systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(3):715-728.
SHEHZAD M K, ROSE L, WESEMANN S, et al. ML-Based Massive MIMO Channel Prediction:Does It Work on Real-World Data?[J]. IEEE Wireless Communications Letters, 2022, 11(4):811-815.
YI X M, ZHONG C J. Deep Learning for Joint Channel Estimation and Signal Detection in OFDM Systems[J]. IEEE Communications Letters, 2020, 24(12):2780-2784.
ZHOU X Y, ZHANG J, WEN C K, et al. Model-Driven Deep Learning-Based Signal Detector for CP-Free MIMO-OFDM Systems[C]//2021 IEEE International Conference on Communications Workshops(ICC Workshops). Piscataway:IEEE, 2021:1-6.
NACHMANI E, MARCIANO E, LUGOSCH L, et al. Deep Learning Methods for Improved Decoding of Linear Codes[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1):119-131.
张捷, 杨丽花, 王增浩, 等. 一种新型的基于深度学习的时变信道预测方法[J]. 电信科学, 2021, 37(1):39-47.
ZHANG Jie, YANG Lihua, WANG Zenghao, et al. A Novel Deep Learning Based Time-Varying Channel Prediction Method[J]. Telecommunications Science, 2021, 37(1):39-47.
陈中康. 基于深度学习的高铁移动通信信道预测和信号检测研究[D]. 南京: 南京邮电大学, 2020.
XUE C, ZHOU T, ZHANG H T, et al. Deep Learning Based Channel Prediction for Massive MIMO Systems in High-Speed Railway Scenarios[C]// 2021 IEEE 93rd Vehicular Technology Conference(VTC2021-Spring), Piscataway:IEEE, 2021:1-5.
朱丰超, 曾盛, 周雅彬. 基于信道均衡的无线信道指纹滤除方法[J]. 华中科技大学学报(自然科学版), 2022, 50(3):29-35.
ZHU Fengchao, ZENG Sheng, ZHOU Yabin. Method of Wireless Channel Fingerprint Elimination Based on Channel Equalization[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(3):29-35.
GHAZAL A, WANG C X, LIU Y, et al. A Generic Non-Stationary MIMO Channel Model for Different High-Speed Train Scenarios[C]//2015 IEEE/CIC International Conference on Communications in China(ICCC). Piscataway:IEEE, 2015:1-6.
LI L J, CHEN H, CHANG H H, et al. Deep Residual Learning Meets OFDM Channel Estimation[J]. IEEE Wireless Communications Letters, 2020, 9(5):615-618.
GAO Z K, DANG W D, WANG X M, et al. Complex Networks and Deep Learning for EEG Signal Analysis[J]. Cognitive Neurodynamics, 2021, 15(3):369-388.
DONG Z X, ZHAO Y S, CHEN Z H. Support Vector Machine for Channel Prediction in High-Speed Railway Communication Systems[C]//2018 IEEE MTT-S International Wireless Symposium(IWS). Piscataway:IEEE, 2018:1-3.
0
浏览量
3
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构