1. 电子科技大学 通信抗干扰全国重点实验室,四川 成都 611731
2. 电磁空间认知与智能控制技术实验室,北京 100089
3. 北京理工大学 网络空间安全学院,北京 100081
[ "段柏宇(1996—),男,电子科技大学博士研究生,E-mail:[email protected];" ]
[ "杨 健(1982—),男,研究员,E-mail:[email protected];" ]
[ "陈 聪(1990—),男,电子科技大学博士研究生,E-mail:[email protected];" ]
[ "郭文博(1994—),男,电子科技大学博士后,E-mail:[email protected];" ]
[ "李 彤(1996—),女,电子科技大学博士研究生,E-mail:[email protected]" ]
邵士海(1980—),男,教授,E-mail:[email protected]
扫 描 看 全 文
段柏宇, 杨健, 陈聪, 等. 线性分布式定向阵列波束空间覆盖面积分析[J]. 西安电子科技大学学报, 2023,50(5):32-43.
段柏宇, 杨健, 陈聪, 等. 线性分布式定向阵列波束空间覆盖面积分析[J]. 西安电子科技大学学报, 2023,50(5):32-43. DOI: 10.19665/j.issn1001-2400.20230103.
相控阵天线因具有高增益、高可靠性、波束指向可控等优点,已广泛应用于雷达、通信等领域。考虑到阵列天线体积、部署地形、设备功耗等因素的限制,单一相控阵天线在某些复杂场景下难以满足需求。特别是在天地间通信、侦察及干扰等场景下,需要多部相控阵天线分布式部署,进行协同波束合成,以获得与单部阵列天线相比更高的功率增益。分布式定向阵列利用多个分布式阵列节点形成虚拟天线阵列,通过调整各阵元的相位收发同一信号,合成定向波束。针对分布式定向阵列合成波束在特定高度平面上增益覆盖面积的计算问题,利用阵列天线波束合成原理、方向图乘积定理以及空间解析几何,提出一种理论解析计算方法。建模分析及仿真结果表明,线性分布式定向阵列波束合成的增益覆盖面积,包括主瓣及栅瓣波束增益覆盖面积,与分布式阵列的俯仰角、目标平面高度、信号载频以及分布式节点个数强相关,但与分布式节点间距关联较弱;且所提方法的解析值与计算机仿真值相符,可为远距离大功率分布式阵列的工程实现提供理论参考。
The phased array antenna has been widely used in radar,communication and other fields because of its advantages of high gain,high reliability and controllability of the beam.Considering the limitations of the size,the deployment terrain and the power consumption of the phased array antenna,it is difficult for a single phased array antenna to meet the requirements in some complex scenes,especially in some scenarios such as the space-earth communication,reconnaissance and jamming,so it is necessary to deploy multiple phased array antennas in a distributed manner for cooperative beamforming to obtain a higher power gain than a single array antenna.The distributed directional array uses multiple distributed array nodes to realize a virtual antenna array,sending or receiving the same signal by adjusting the phase of each array element to form the directional beam.A calculation method is proposed based on the principle of array synthesis and spatial analytic geometry aiming at the problem of calculating the gain coverage area of the distributed directional array beam in a specific height plane.Analysis and simulation results show that the gain coverage area of the linear distributed directional array beam,including the main lobe and gate lobe beam gain coverage area,is strongly correlated with the elevation angle of the distributed array,the height of the target plane,the signal carrier frequency and the number of distributed nodes,while it is weakly correlated with the distance between the distributed nodes.The analytical value of the proposed method is consistent with the computer simulation value,which can provide a theoretical reference for the implementation of the long-distance high-power distributed array in engineering.
波束合成分布式阵列空间解析几何覆盖面积分析面积测算
beamformingdistributed arrayspatial analytic geometrycoverage area analysisarea measurement
WANG C S, WANG Y, LIAN P Y, et al. Space Phased Array Antenna Developments:A Perspective on Structural Design[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(7):44-63.
赵国林, 刘剑豪, 韩俊. 一种新的相控阵雷达旁瓣混和干扰策略[J]. 中国电子科学研究院学报, 2015, 10(6):607-612.
ZHAO Guolin, LIU Jianhao, HAN Jun. A Novel Sidelobe Mixed Jamming Strategy against Phased Array Radar[J]. Journal of China Academy of Electronics & Information Technology, 2015, 10(6):607-612.
LI Z, ZHANG Y, BOROWSKA L, et al. Polarimetric Phased Array Weather Radar Data Quality Evaluation Through Combined Analysis,Simulation,and Measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6):1029-1033. DOI:10.1109/LGRS.2020.2990334http://doi.org/10.1109/LGRS.2020.2990334https://ieeexplore.ieee.org/document/9093859/https://ieeexplore.ieee.org/document/9093859/
MAGGI M, HIDRI S, MARNAT L, et al. Millimeter-Wave Phased Arrays and Over-the-Air Characterization for 5G and Beyond:Overview on 5G mm-Wave Phased Arrays and OTA Characterization[J]. IEEE Microwave Magazine, 2022, 23(5):67-83. DOI:10.1109/MMM.2022.3148328http://doi.org/10.1109/MMM.2022.3148328https://ieeexplore.ieee.org/document/9748962/https://ieeexplore.ieee.org/document/9748962/
JAYAPRAKASAM S, RAHIM S K A, LEOW C Y. Distributed and Collaborative Beamforming in Wireless Sensor Networks:Classifications,Trends,and Research Directions[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4):2092-2116.
袁丁, 孙慧贤, 闫云斌, 等. 节点本振误差对分布式发射波束形成性能的影响[J]. 上海交通大学学报, 2020, 54(1):92-99.
YUAN Ding, SUN Huixian, YAN Yunbin, et al. Influence of Node Local Oscillator Errors on Distributed Transmit Beamforming[J]. Journal of Shanghai Jiaotong University, 2020, 54(1):92-99.
MGHABGHAB S R, NANZER J A. Impact of VCO and PLL Phase Noise on Distributed Beamforming Arrays with Periodic Synchronization[J]. IEEE Access, 2021, 9:56578-56588. DOI:10.1109/ACCESS.2021.3071637http://doi.org/10.1109/ACCESS.2021.3071637https://ieeexplore.ieee.org/document/9398687/https://ieeexplore.ieee.org/document/9398687/
BÉJAR HARO B, ZAZO S, PALOMAR D P. Energy Efficient Collaborative Beamforming in Wireless Sensor Networks[J]. IEEE Transactions on Signal Processing, 2014, 62(2):496-510. DOI:10.1109/TSP.2013.2288080http://doi.org/10.1109/TSP.2013.2288080http://ieeexplore.ieee.org/document/6650017/http://ieeexplore.ieee.org/document/6650017/
SUN G, ZHAO X H, SHEN G J, et al. Improving Performance of Distributed Collaborative Beamforming in Mobile Wireless Sensor Networks:A Multiobjective Optimization Method[J]. IEEE Internet of Things Journal, 2020, 7(8):6787-6801. DOI:10.1109/JIoT.6488907http://doi.org/10.1109/JIoT.6488907https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907
SUN G, LIU Y H, CHEN Z Y, et al. Energy Efficient Collaborative Beamforming for Reducing Sidelobe in Wireless Sensor Networks[J]. IEEE Transactions on Mobile Computing, 2021, 20(3):965-982. DOI:10.1109/TMC.7755http://doi.org/10.1109/TMC.7755https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7755https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7755
XU J W, YANG Y, YANG Y, et al. Two-Step Phase Synchronization Algorithm for Distributed Collaborative Beamforming[C]//2021 IEEE 6th International Conference on Signal and Image Processing.Piscataway:IEEE, 2021:1188-1192.
OUASSAL H, YAN M, NANZER J A. Decentralized Frequency Alignment for Collaborative Beamforming in Distributed Phased Arrays[J]. IEEE Transactions on Wireless Communications, 2021, 20(10):6269-6281. DOI:10.1109/TWC.2021.3073120http://doi.org/10.1109/TWC.2021.3073120https://ieeexplore.ieee.org/document/9410434/https://ieeexplore.ieee.org/document/9410434/
BALANIS C A. Antenna Theory:Analysis and Design[M]. 4th ed. Hoboken: John Wiley & Sons, 2016.
VAN TREES H L, 汤俊. 最优阵列处理技术[M]. 北京: 清华大学出版社, 2008.
ANTON H, RORRES C. Elementary Linear Algebra:Applications Version[M]. 11th ed. Hoboken: John Wiley & Sons, 2013.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构