1. 西安电子科技大学 雷达信号处理全国重点实验室,陕西 西安 710071
2. 西安电子科技大学 前沿交叉研究院,陕西 西安 710071
[ "周生威(1997—),男,西安电子科技大学博士研究生,E-mail:[email protected]" ]
李宁(1994—),男,讲师,E-mail:[email protected]
[ "邢孟道(1975—),男,教授,E-mail:[email protected]" ]
纸质出版日期:2024-1-20,
网络出版日期:2023-10-24,
收稿日期:2022-9-15,
扫 描 看 全 文
周生威, 李宁, 邢孟道. 基于谱压缩的大斜视TOPS BP图像自聚焦算法[J]. 西安电子科技大学学报, 2024,51(1):1-10.
Shengwei ZHOU, Ning LI, Mengdao XING. Spectrum compression based autofocus algorithm for the TOPS BP image[J]. Journal of Xidian University, 2024,51(1):1-10.
周生威, 李宁, 邢孟道. 基于谱压缩的大斜视TOPS BP图像自聚焦算法[J]. 西安电子科技大学学报, 2024,51(1):1-10. DOI: 10.19665/j.issn1001-2400.20230102.
Shengwei ZHOU, Ning LI, Mengdao XING. Spectrum compression based autofocus algorithm for the TOPS BP image[J]. Journal of Xidian University, 2024,51(1):1-10. DOI: 10.19665/j.issn1001-2400.20230102.
在机动平台大斜视TOPS模式SAR成像时
通过使用地平面直角坐标系BP成像算法
能够在短时间内获取地距平面无畸变的宽幅SAR图像
但实际应用中如何对BP图像快速完成运动误差补偿与旁瓣抑制仍是一个难点。针对此问题
提出了一种改进的谱压缩方法
基于此能够快速实现机动平台大斜视TOPS模式地平面BP图像自聚焦等后续操作。首先
考虑到传统BP谱压缩方法仅适用于聚束成像模式
结合大斜视TOPS SAR虚拟旋转中心理论与波数谱分析
推导出了改进的精确谱压缩函数
能够通过全孔径压缩获得无模糊的地平面TOPS模式BP图像频谱。在此基础上
利用相位梯度自聚焦(PGA)能够快速完成全孔径运动误差估计与补偿。此外
基于提出的改进谱压缩方法得到的无模糊对齐BP图像频谱
可以在方位频域统一加窗实现图像旁瓣抑制。最后
通过仿真数据处理验证了所提算法的有效性。
In the high squint TOPS mode SAR imaging of the maneuvering platform
by using the BP imaging algorithm in the rectangular coordinate system of the ground plane
the wide swath SAR image without distortion in the ground plane can be obtained in a short time.However
how to quickly complete the motion error compensation and side lobe suppression of the BP image is still difficult in practical application.This paper proposes an improved spectral compression method
which can quickly realize the follow-up operations such as autofocus of the BP image of the ground plane in the high squint TOPS mode of the mobile platform.First
by considering that the traditional BP spectral compression method is only applicable to the spotlight imaging mode
combined with the virtual rotation center theory of high-squint TOPS SAR and the wavenumber spectrum analysis
an improved exact spectral compression function is derived
which can give rise to the unambiguous ground plane TOPS mode BP image spectrum through full-aperture compression
on the basis of which the phase gradient autofocus(PGA) can be used to quickly complete the full aperture motion error estimation and compensation.In addition
based on the unambiguous aligned BP image spectrum obtained by the improved spectral compression method proposed in this paper
the image sidelobe suppression can be realized by uniformly windowing in the azimuth frequency domain.Finally
the effectiveness of the proposed algorithm is verified by simulation data processing.
TOPS模式地平面BP成像谱压缩运动误差补偿旁瓣抑制
TOPS modeground rectangular coordinate BP imagingspectrum compressionmotion error compensationsidelobe suppression
ZAN F D, GUARNIERI A M. TOPSAR:Terrain Observation by Progressive Scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2352-2360.
PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of Sliding Spotlight and TOPS SAR Data Using Baseband Azimuth Scaling[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(2):770-780.
META A, MITTERMAYER J, PRATS P, et al. TOPS Imaging with TerraSAR-X:Mode Design and Performance Analysis[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010, 48(2):759-769.
RODRIGUEZ-CASSOLA M, PRATS-IRAOLA P, ZAN F D, et al. Doppler-Related Distortions in TOPS SAR Images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(1):25-35.
DENG B, LI X, WANG H, et al. Fast Raw-Signal Simulation of Extended Scenes for Missile-Borne SAR With Constant Acceleration[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 8(1):44-48.
CHEN S, ZHAO H, ZHANG S, et al. An Extended Nonlinear Chirp Scaling Algorithm for Missile Borne SAR Imaging[J]. Signal Processing, 2014, 99:58-68.
CHENG H, LIU Z, TENG L. An Improved CS Algorithm Based on the Curved Trajectory in Geosynchronous SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2012, 5(3):795-808.
SUN G C, XING M, WANG Y, et al. A 2-D Space-Variant Chirp Scaling Algorithm Based on the RCM Equalization and Subband Synthesis to Process Geosynchronous SAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8):4868-4880.
CHEN J, SUN G C, WANG Y, et al. A TSVD-NCS Algorithm in Range-Doppler Domain for Geosynchronous Synthetic Aperture Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(11):1631-1635.
ZHANG S X, XING M D, XIA X G, et al. Focus Improvement of High-Squint SAR Based on Azimuth Dependence of Quadratic Range Cell Migration Correction[J]. IEEE Geoscience & Remote Sensing Letters, 2013, 10(1):150-154.
XIONG T, XING M, XIA X G, et al. New Applications of Omega-K Algorithm for SAR Data Processing Using Effective Wavelength at High Squint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):3156-3169.
XING M, WU Y, ZHANG Y D, et al. Azimuth Resampling Processing for Highly Squinted Synthetic Aperture Radar Imaging With Several Modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7):4339-4352.
黄平平, 邓云凯, 徐伟, 等. 基于频域合成方法的多发多收SAR技术研究[J]. 电子与信息学报, 2011, 33(2):401-406.
HUANG Pingping, DENG Yunkai, XU Wei, et al. Multiple SAR Technology Research Based on Frequency Domain Synthesis Method[ J ]. Electronic and informatics, 2011, 33(2) :401-406.
邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6):732-757.
XING Mengdao, LIN Hao, CHEN Jianlai, et al. A Review of Imaging Algorithms in Multi-Platform-Borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6):732-757.
DESAI M, JENKINS W. Convolution Backprojection Image Reconstruction for Spotlight Mode Synthetic Aperture Radar. IEEE Transactions on Image Processing, 1992, 1(4):505-517.
ULANDER L, HELLSTEN H, STENSTROM G. Synthetic-Aperture Radar Processing Using Fast Factorized Back-Projection[J]. IEEE Transactions on Aerospace & Electronic Systems, 2003, 39(3):760-776.
CHEN X, SUN G C, XING M, et al. Ground Cartesian Back-Projection Algorithm for High Squint Diving TOPS SAR Imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):5812-5827.
BAO M, ZHOU S, XING M. Processing Missile-Borne SAR Data by Using Cartesian Factorized Back Projection Algorithm Integrated with Data-Driven Motion Compensation. Remote Sensing, 2021, 13(8):1462.
YANG J, HUANG X, JIN T, et al. An Interpolated Phase Adjustment by Contrast Enhancement Algorithm for SAR[J]. IEEE Geoscience & Remote Sensing Letters, 2011, 8(2):211-215.
ZENG L, LIANG Y, XING M, et al. A Novel Motion Compensation Approach for Airborne Spotlight SAR of High-Resolution and High-Squint Mode[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3):429-433.
REIGBER A, ALIVIZATOS E, POTSIS A, et al. Extended Wavenumber-Domain Synthetic Aperture Radar Focusing with Integrated Motion Compensation[J]. IEE Proceedings-Radar,Sonar and Navigation, 2006, 153(3):301-310.
ZHU D Y, JIANG R, MAO X H, et al. Multi-Subaperture PGA for SAR Autofocusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1):468-487.
WAHLD E, EICHEL P H, GHIGLIA D C, et al. Phase Gradient Autofocus-A Robust Tool for High Resolution SAR Phase Correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3):827-835.
ZHANG L, WANG G Y, QIAO Z J, et al. Azimuth Motion Compensation with Improved Subaperture Algorithm for Airborne SAR Imaging[J]. IEEE Journal of Selected of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1):184-193.
ZHANG L, LI H L, QIAO Z J, et al. Integrating Autofocus Techniques with Fast Factorized Back-Projection for High-Resolution Spotlight SAR Imaging[J] IEEE Geoscience and Remote Sensing Letters, 2013, 10(6):1394-1398.
DONG Q, SUN G, YANG Z, et al. Cartesian Factorized Backprojection Algorithm for High-Resolution Spotlight SAR Imaging[J]. IEEE Sensors Journal, 2018, 18(3):1160-1168.
YANG Z M, XING M D, ZHANG L, et al. A Coordinate-Transform Based FFBP Algorithm for High-Resolution Spotlight SAR Imaging[J] Science China Information Sciences, 2015, 58(2):1-11.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构