1. 贵州财经大学 信息学院 贵州省大数据统计分析重点实验室,贵州 贵阳 550025
2. 贵安新区科创产业发展有限公司,贵州 贵阳 550025
[ "丁红发(1988—),男,副教授,E-mail:[email protected];" ]
[ "唐明丽(1998—),男,贵州财经大学硕士研究生,E-mail:[email protected];" ]
[ "刘海(1984—),男,副教授,E-mail:[email protected];" ]
[ "蒋合领(1983—),男,讲师,E-mail:[email protected];" ]
[ "傅培旺(2000—),男,贵州财经大学硕士研究生,E-mail:[email protected];" ]
[ "于莹莹(1998—),女,贵州财经大学硕士研究生,E-mail:[email protected]" ]
扫 描 看 全 文
丁红发, 唐明丽, 刘海, 等. 邻居子图扰动下的
丁红发, 唐明丽, 刘海, 等. 邻居子图扰动下的
大规模图数据在商业和学术研究中应用广泛,在其共享发布场景中隐私保护极为重要。现有的匿名隐私保护模型难以有效解决图数据隐私保护和数据效用间的冲突问题。针对此问题,基于邻居子图扰动提出一种增强隐私保护程度和数据效用水平的,k,度匿名隐私保护模型。首先,该模型利用邻居子图扰动机制优化扰动图数据节点的1-邻居子图,提高扰动效率并减少数据效用损失;其次,利用分治策略并依据节点度序列实现对节点匿名组的优化划分,提高匿名图数据的效用;最后,采用边修改和子图边缘修改的策略重构匿名图数据,实现图数据,k,度匿名隐私保护。对比和实验结果表明,所提出模型比现有模型在计算开销和安全性方面有了较大提升,能够同时抗节点度攻击和邻居子图攻击,在边变化比例、信息损失、平均节点度变化和聚类系数等指标方面数据效用显著提升。
With the increasing use of mass graph data in commerce and academia,it has become critical to ensure privacy when sharing and publishing graph data.However,existing anonymous privacy-preserving models struggle to balance the conflict between privacy and utility of graph data.To address this issue,a ,k,-degree anonymity privacy preserving model based on neighbor subgraph perturbation has been proposed,which enhances both the levels of privacy preservation and data utility.To achieve ,k,-degree anonymity privacy preservation,this model first perturbs the 1-neighbor subgraph of each node in graph data by using neighbor subgraph perturbation.This perturbation is optimized,resulting in improved perturbing efficiency and reduced data utility loss.Next,the partition of anonymous node group is optimized by using a divide-and-conquer strategy based on the degree sequence of nodes,leading to improved utility of the anonymized graph.Finally,the anonymized graph is reconstructed by editing both edges and subgraph borders to achieve ,k,-degree anonymity privacy preservation.Comparisons and experiments have shown that the proposed model greatly improves both the overhead and security when compared to existing models and that it is able to resist both degree-based attacks and neighborhood attacks.Furthermore,the data utility is greatly improved,as evidenced by metrics such as change proportion of edges,information loss,change in the average degree of nodes,and clustering coefficient.
隐私保护技术图结构匿名k-度匿名邻居子图
privacy-preserving techniquesgraph structuresanonymizationk-degree anonymousneighbor subgraph
HEIDARI S, SIMMHAN Y, CALHEIROS R N, et al. Scalable Graph Processing Frameworks:A Taxonomy and Open Challenges[J]. ACM Computing Surveys, 2018, 51(3):1-53.
BACKSTROM L, DWORK C, KLEINBERG J. Wherefore Art Thou R3579X?:Anonymized Social Networks,Hidden Patterns,and Structural Steganography[C]// The 16th International Conference on World Wide Web. New York: ACM, 2007:181-190.
刘宇涵, 陈红, 刘艺璇, 等. 图数据上的隐私攻击与防御技术[J]. 计算机学报, 2022, 45(4):702-734.
LIU Yuhan, CHEN Hong, LIU Yixuan, et al. Privacy Attack and Defense Technology on Graph Data[J]. Journal of Computer Science, 2022, 45 (4):702-734.
KAUR H, HOODA N, SINGH H. k-Anonymization of Social Network Data using Neural Network and SVM:K-NeuroSVM[J]. Journal of Information Security and Applications, 2023, 72:103382. DOI:10.1016/j.jisa.2022.103382http://doi.org/10.1016/j.jisa.2022.103382https://linkinghub.elsevier.com/retrieve/pii/S2214212622002265https://linkinghub.elsevier.com/retrieve/pii/S2214212622002265
GAO J R, CHEN W, XU JJ, et al. An Efficient Framework for Multiple Subgraph Pattern Matching Models[J]. Journal of Computer Science and Technology, 2019, 34:1185-1202. DOI:10.1007/s11390-019-1969-xhttp://doi.org/10.1007/s11390-019-1969-x
GAO T, LI F. Privacy-Preserving Sketching for Online Social Network Data Publication[C]// 2019 16th Annual IEEE International Conference on Sensing,Communication,and Networking (SECON).Piscataway:IEEE, 2019:1-9.
DWORK C. Differential Privacy[C]// International Colloquium on Automata,Languages,and Programming,Berlin:Springer, 2006:1-12.
徐花, 田有亮. 差分隐私下的权重社交网络隐私保护[J]. 西安电子科技大学学报, 2022, 49(1):17-25.
XU Hua, TIANYouliang. Protection of Privacy of the Weighted Social Network Under Differential Privacy[J]. Journal of Xidian University, 2022, 49(1):17-25.
ZHAO Y, CHEN J. A Survey on Differential Privacy for Unstructured Data Content[J]. ACM Computing Surveys, 2022, 54(10s):1-28.
CAI T T, WANG Y, ZHANG L. The Cost of Privacy:Optimal Rates of Convergence for Parameter Estimation with Differential Privacy[J]. The Annals of Statistics, 2021, 49(5):2825-2850.
JIANG H, PEI J, YU D, et al. Applications of Differential Privacy in Social Network Analysis:A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1):108-127.
HAY M, MIKLAU G, JENSEN D, et al. Resisting Structural Re-Identification in Anonymized Social Networks[J]. The VLDB Journal, 2010, 19(6):797-823. DOI:10.1007/s00778-010-0210-xhttp://doi.org/10.1007/s00778-010-0210-xhttp://link.springer.com/10.1007/s00778-010-0210-xhttp://link.springer.com/10.1007/s00778-010-0210-x
LIU K, TERZI E. Towards Identity Anonymization on Graphs[C]// The 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008:93-106.
YAZDANJUE N, FATHIAN M, AMIRI B. Evolutionary Algorithms fork-Anonymity in Social Networks Based on Clustering Approach[J]. The Computer Journal, 2020, 63(7):1039-1062. DOI:10.1093/comjnl/bxz069http://doi.org/10.1093/comjnl/bxz069https://academic.oup.com/comjnl/article/63/7/1039/5550898https://academic.oup.com/comjnl/article/63/7/1039/5550898
LANGARI R K, SARDAR S, MOUSAVI S A A, et al. Combined Fuzzy Clustering and Firefly Algorithm for Privacy Preserving in Social Networks[J]. Expert Systems with Applications, 2020, 141:112968. DOI:10.1016/j.eswa.2019.112968http://doi.org/10.1016/j.eswa.2019.112968https://linkinghub.elsevier.com/retrieve/pii/S0957417419306864https://linkinghub.elsevier.com/retrieve/pii/S0957417419306864
HONG L, XIAO R. Towards Publishing Directed Social Network Data with k-Degree Anonymization[J]. Concurrency and Computation:Practice and Experience, 2022, 34(24):e7226. DOI:10.1002/cpe.v34.24http://doi.org/10.1002/cpe.v34.24https://onlinelibrary.wiley.com/toc/15320634/34/24https://onlinelibrary.wiley.com/toc/15320634/34/24
LIU P, LI X. An Improved Privacy Preserving Algorithm for Publishing Social Network Data[C]// 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing.Piscataway:IEEE, 2013:888-895.
BAZGAN C, CAZALS P, CHLEBÍKOVÁ J. Degree-Anonymization Using Edge Rotations[J]. Theoretical Computer Science, 2021, 873:1-15. DOI:10.1016/j.tcs.2021.04.020http://doi.org/10.1016/j.tcs.2021.04.020https://linkinghub.elsevier.com/retrieve/pii/S0304397521002413https://linkinghub.elsevier.com/retrieve/pii/S0304397521002413
ZHOU B, PEI J. Preserving Privacy in Social Networks Against Neighborhood Attacks[C]// 2008 IEEE 24th International Conference on Data Engineering.Piscataway:IEEE, 2008:506-515.
CHENG J, FU A W, LIU J. k-Isomorphism:Privacy Preserving Network Publication Against Structural Attacks[C]// The 2010 ACM SIGMOD International Conference on Management of data. New York: ACM 2010:459-470.
ZOU L, CHEN L, ÖZSU M T. k-automorphism:A General Framework for Privacy Preserving Network Publication[J]. Proceedings of the VLDB Endowment, 2009, 2(1):946-957. DOI:10.14778/1687627.1687734http://doi.org/10.14778/1687627.1687734https://dl.acm.org/doi/10.14778/1687627.1687734https://dl.acm.org/doi/10.14778/1687627.1687734
OUAFAE B, MARIAM R, OUMAIMA L, et al. Data Anonymization in Social Networks (2020)[J/OL].[2022-01-04]. https://easychair.org/publications/preprint_download/dfvj. https://easychair.org/publications/preprint_download/dfvjhttps://easychair.org/publications/preprint_download/dfvj
LIU A X, LI R. Publishing Social Network Data with Privacy Guarantees[M]. Algorithms for Data and Computation Privacy.Heidelberg:Springer, 2021:279-311.
LIANG Y, SAMAVI R. Optimization-Based k-Anonymity Algorithms[J]. Computers & Security, 2020, 93:101753. DOI:10.1016/j.cose.2020.101753http://doi.org/10.1016/j.cose.2020.101753https://linkinghub.elsevier.com/retrieve/pii/S0167404820300377https://linkinghub.elsevier.com/retrieve/pii/S0167404820300377
SHAKEEL S, ANJUM A, ASHERALIEVA A, et al. k-NDDP:An Efficient Anonymization Model for Social Network Data Release[J]. Electronics, 2021, 10(19):2440. DOI:10.3390/electronics10192440http://doi.org/10.3390/electronics10192440https://www.mdpi.com/2079-9292/10/19/2440https://www.mdpi.com/2079-9292/10/19/2440
KIABOD M, DEHKORDI M N, BAREKATAIN B. TSRAM:A Time-Savingk-Degree Anonymization Method in Social Network[J]. Expert Systems with Applications, 2019, 125:378-396. DOI:10.1016/j.eswa.2019.01.059http://doi.org/10.1016/j.eswa.2019.01.059https://linkinghub.elsevier.com/retrieve/pii/S0957417419300818https://linkinghub.elsevier.com/retrieve/pii/S0957417419300818
KIABOD M, DEHKORDI M N, BAREKATAIN B. A Fast Graph Modification Method for Social Network Anonymization[J]. Expert Systems with Applications, 2021, 180:115-148.
CASAS-ROMA J, HERRERA-JOANCOMARTÍ J, TORRA V. k-Degree Anonymity and Edge Selection:Improving Data Utility in Large Networks[J]. Knowledge and Information Systems, 2017, 50(2):447-474. DOI:10.1007/s10115-016-0947-7http://doi.org/10.1007/s10115-016-0947-7http://link.springer.com/10.1007/s10115-016-0947-7http://link.springer.com/10.1007/s10115-016-0947-7
CASAS-ROMA J, SALAS J, MALLIAROS F D, et al. k-Degree Anonymity on Directed Networks[J]. Knowledge and Information Systems, 2019, 61(3):1743-1768. DOI:10.1007/s10115-018-1251-5http://doi.org/10.1007/s10115-018-1251-5
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构