1. 中国人民解放军战略支援部队信息工程大学 网络空间安全学院,河南 郑州 450001
2. 数学工程与先进计算国家重点实验室,河南 郑州 450001
3. 河南省网络空间态势感知重点实验室,河南 郑州 450001
4. 常熟理工学院 计算机科学与工程学院,江苏 常熟 215500
[ "范文同(1998—),男,中国人民解放军战略支援部队信息工程大学硕士研究生,E-mail:[email protected];" ]
李震宇(1989—),男,副教授,E-mail:[email protected]
[ "张涛(1977—),男,教授,E-mail:[email protected];" ]
[ "罗向阳(1978—),男,教授,E-mail:[email protected]" ]
扫 描 看 全 文
范文同, 李震宇, 张涛, 等. 基于隐写噪声深度提取的JPEG图像隐写分析[J]. 西安电子科技大学学报, 2023,50(4):157-169.
范文同, 李震宇, 张涛, 等. 基于隐写噪声深度提取的JPEG图像隐写分析[J]. 西安电子科技大学学报, 2023,50(4):157-169. DOI: 10.19665/j.issn1001-2400.2023.04.016.
当前基于深度学习的隐写分析方法检测效果受限于其获取的隐写噪声的精确度。为了获取更加准确的隐写噪声,提高隐写分析的准确率,提出了一种基于隐写噪声深度提取的JPEG图像隐写分析方法。首先,设计了隐写噪声深度提取网络,通过有监督的学习方式使网络能够准确地提取载秘图像中包含的隐写噪声;而后,利用设计的模型评价指标选择最优的隐写噪声提取网络;最后,根据隐写噪声的特点设计分类网络,实现载秘图像的检测,并将分类网络与隐写噪声深度提取网络融合得到最终的检测网络。实验在两个大规模的公开数据集(BOSSBase和BOWS2)上进行,针对两种自适应JPEG图像隐写方法(J-UNIWARD和UED-JC)在多个不同嵌入率和图像质量因子条件下构建的载秘图像进行检测。实验结果表明,该方法的检测准确率较性能第二的方法分别提高了约2.22%和0.85%。文中方法通过提取更加准确的隐写噪声,减少了图像内容对隐写分析带来的影响,相比于典型的基于深度学习的JPEG图像隐写分析方法,取得了更好的检测效果。
The performance of steganalysis is limited by the quality of the stego noise obtained by current deep learning-based methods.In order to obtain more accurate stego noise and improve the accuracy of steganalysis,a new method is proposed based on deep extraction of stego noise for JPEG image steganalysis.First,a stego noise deep extraction network is formulated to precisely extract the stego noise from stego images with the supervised trained network.Then,a model evaluation index is proposed to select the most effective network for stego noise extraction.Finally,according to the characteristics of stego noise,a classification network is designed to detect the stego images,which is then combined with the stego noise extraction network to obtain the final detection network.In the steganalysis experiment,two large-scale publicly available datasets(BOSSBase and BOWS2)are used to construct the stego images by two adaptive JPEG image steganography methods (J-UNIWARD and UED-JC) under several embedding rates and quality factors.Experimental results show that the detection accuracy of the method proposed in this article has been improved by up to 2.22% and 0.85%,respectively compared to the second-best performing method.By extracting more accurate stego noise and reducing the impact of image content on steganalysis,the proposed method achieves a better detection performance compared to typical deep learning-based JPEG steganalysis methods.
JPEG图像隐写分析隐写噪声卷积神经网络深度学习
JPEG image steganalysisstego noiseconvolutional neural networkdeep learning
XIANG S J, LUO X R. Reversible Data Hiding in Encrypted Image Based on Homomorphic Public Key Cryptosystem[J]. Journal of Software, 2016, 27(6):1592-1601.
MANDAL P C, MUKHERJEE I, PAUL G, et al. Digital Image Steganography:A Literature Survey[J]. Information Sciences, 2022, 609:1451-1488. DOI:10.1016/j.ins.2022.07.120http://doi.org/10.1016/j.ins.2022.07.120https://linkinghub.elsevier.com/retrieve/pii/S002002552200809Xhttps://linkinghub.elsevier.com/retrieve/pii/S002002552200809X
NISSAR A, MIR A H. Classification of Steganalysis Techniques:A Study[J]. Digital Signal Processing, 2010, 20(6):1758-1770. DOI:10.1016/j.dsp.2010.02.003http://doi.org/10.1016/j.dsp.2010.02.003https://linkinghub.elsevier.com/retrieve/pii/S1051200410000412https://linkinghub.elsevier.com/retrieve/pii/S1051200410000412
翟黎明, 嘉炬, 任魏翔, 等. 深度学习在图像隐写术与隐写分析领域中的研究进展[J]. 信息安全学报, 2018, 3(6):2-12.
ZHAI Liming, JIA Ju, REN Weixiang, et al. Recent Advances in Deep Learning for Image Steganography and Steganalysis[J]. Journal of Cyber Security, 2018, 3(6):2-12.
FRIDRICH J, KODOVSKY J. Rich Models for Steganalysis of Digital Images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3):868-882. DOI:10.1109/TIFS.2012.2190402http://doi.org/10.1109/TIFS.2012.2190402http://ieeexplore.ieee.org/document/6197267/http://ieeexplore.ieee.org/document/6197267/
HOLUB V, FRIDRICH J. Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT[J]. IEEE Transactions on Information Forensics and Security, 2014, 10(2):219-228.
HOLUB V, FRIDRICH J. Phase-Aware Projection Model for Steganalysis of JPEG Images[C]// Media Watermarking,Security,and Forensics 2015. San Francisco: SPIE, 2015:259-269.
SONG X, LIU F, YANG C, et al. Steganalysis of Adaptive JPEG Steganography Using 2D Gabor Filters[C]// Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2015:15-23.
SU W, NI J, HU X, et al. Towards Improving the Security of Image Steganography via Minimizing the Spatial Embedding Impact[J]. Digital Signal Processing, 2022, 131:103758. DOI:10.1016/j.dsp.2022.103758http://doi.org/10.1016/j.dsp.2022.103758https://linkinghub.elsevier.com/retrieve/pii/S105120042200375Xhttps://linkinghub.elsevier.com/retrieve/pii/S105120042200375X
邱应强, 蔡灿辉, 曾焕强, 等. 可自纠错的联合式加密图像可逆数据隐藏算法[J]. 西安电子科技大学学报, 2021, 48(1):107-116.
QIU Yingqiang, CAI Canhui, ZENG Huanqiang, et al. Joint Reversible Data Hiding in Encrypted Images with the Self-Correcting Ability[J]. Journal of Xidian University, 2021, 48(1):107-116.
陈君夫, 付章杰, 张卫明, 等. 基于深度学习的图像隐写分析综述[J]. 软件学报, 2021, 32(2):551-578.
CHEN Junfu, FU Zhangjie, ZHANG Weiming, et al. Review of Image Steganalysis Based on Deep Learning[J]. Journal of Software, 2021, 32(2):551-578.
KHAN A, SOHAIL A, ZAHOORA U, et al. A Survey of the Recent Architectures of Deep Convolutional Neural Networks[J]. Artificial Intelligence Review, 2020, 53:5455-5516. DOI:10.1007/s10462-020-09825-6http://doi.org/10.1007/s10462-020-09825-6
王晓丹, 李京泰, 宋亚飞. DDAC:面向卷积神经网络图像隐写分析模型的特征提取方法[J]. 通信学报, 2022, 43(5):68-81. DOI:10.11959/j.issn.1000-436x.2022089http://doi.org/10.11959/j.issn.1000-436x.2022089
WANG Xiaodan, LI Jingtai, SONG Yafei. DDAC:A Feature Extraction Method for Model of Image Steganalysis Based on Convolutional Neural Network[J]. Journal on Communications, 2022, 43(5):68-81. DOI:10.11959/j.issn.1000-436x.2022089http://doi.org/10.11959/j.issn.1000-436x.2022089
TAN S, LI B. Stacked Convolutional Auto-Encoders for Steganalysis of Digital Images[C]// Signal and Information Processing Association Annual Summit and Conference (APSIPA).Piscataway:IEEE, 2014:1-4.
QIAN Y, DONG J, WANG W, et al. Deep Learning for Steganalysis via Convolutional Neural Networks[C]// Media Watermarking,Security,and Forensics 2015. San Francisco: SPIE, 2015:171-180.
XU G, WU H Z, SHI Y Q. Structural Design of Convolutional Neural Networks for Steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5):708-712. DOI:10.1109/LSP.2016.2548421http://doi.org/10.1109/LSP.2016.2548421http://ieeexplore.ieee.org/document/7444146/http://ieeexplore.ieee.org/document/7444146/
YE J, NI J, YI Y. Deep Learning Hierarchical Representations for Image Steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(11):2545-2557. DOI:10.1109/TIFS.2017.2710946http://doi.org/10.1109/TIFS.2017.2710946http://ieeexplore.ieee.org/document/7937836/http://ieeexplore.ieee.org/document/7937836/
ZHANG R, ZHU F, LIU J, et al. Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2019, 15:1138-1150. DOI:10.1109/TIFS.10206http://doi.org/10.1109/TIFS.10206https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
TSANG C F, FRIDRICH J. Steganalyzing Images of Arbitrary Size with CNNs[J]. Electronic Imaging, 2018, 2018(7):121-1-121-8.
YOU W, ZHANG H, ZHAO X. A Siamese CNN for Image Steganalysis[J]. IEEE Transactions on Information Forensics and Security, 2020, 16:291-306. DOI:10.1109/TIFS.10206http://doi.org/10.1109/TIFS.10206https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10206
ZENG J, TAN S, LI B, et al. Pre-Training via Fitting Deep Neural Network to Rich-Model Features Extraction Procedure and Its Effect on Deep Learning for Steganalysis[J]. Electronic Imaging, 2017, 2017(7):44-49.
ZENG J, TAN S, LI B, et al. Large-Scale JPEG Image Steganalysis Using Hybrid Deep-Learning Framework[J]. IEEE Transactions on Information Forensics and Security, 2017, 13(5):1200-1214. DOI:10.1109/TIFS.2017.2779446http://doi.org/10.1109/TIFS.2017.2779446http://ieeexplore.ieee.org/document/8125774/http://ieeexplore.ieee.org/document/8125774/
XU G. Deep Convolutional Neural Network to Detect J-UNIWARD[C]// Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2017:67-73.
BOROUMAND M, CHEN M, FRIDRICH J. Deep Residual Network for Steganalysis of Digital Images[J]. IEEE Transactions on Information Forensics and Security, 2018, 14(5):1181-1193. DOI:10.1109/TIFS.2018.2871749http://doi.org/10.1109/TIFS.2018.2871749https://ieeexplore.ieee.org/document/8470101/https://ieeexplore.ieee.org/document/8470101/
SU A, ZHAO X, HE X. Arbitrary-Sized JPEG Steganalysis Based on Fully Convolutional Network[C]// International Workshop on Digital Watermarking.Heidelberg:Springer, 2021:197-211.
LIU Q, NI J, JIAN M. Effective JPEG Steganalysis Using Non-Linear Pre-Processing and Residual Channel-Spatial Attention[C]// 2022 IEEE International Conference on Multimedia and Expo (ICME).Piscataway:IEEE, 2022:1-6.
ZHUO S, JIN Z, ZOU W, et al. RIDNet:Recursive Information Distillation Network for Color Image Denoising[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.Piscataway:IEEE, 2019:3896-3903.
EBRAHIMI M S, ABADI H K. Study of Residual Networks for Image Recognition[C]// Intelligent Computing:Proceedings of the 2021 Computing Conference.Heidelberg:Springer, 2021:754-763.
SETIADI D R I M. PSNR vs SSIM:Imperceptibility Quality Assessment for Image Steganography[J]. Multimedia Tools and Applications, 2021, 80(6):8423-8444. DOI:10.1007/s11042-020-10035-zhttp://doi.org/10.1007/s11042-020-10035-z
LIU Z, LIN Y, CAO Y, et al. Swin Transformer:Hierarchical Vision Transformer Using Shifted Windows[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.Piscataway:IEEE, 2021:10012-10022.
BAS P, FILLER T, PEVNY T. “Break Our Steganographic System”:The Ins and Outs of Organizing BOSS[C]// International Workshop on Information Hiding.Heidelberg:Springer, 2011:59-70.
BAS P, FURON T. BOWS-2 Contest(Break Our Watermarking System)(2021)[OB/OL].[2021-12-12]. http://bows2.eclille.fr/. http://bows2.eclille.fr/http://bows2.eclille.fr/
HOLUB V, FRIDRICH J. Digital Image SteganographyUsing Universal Distortion[C]// Proceedings of the first ACM Workshop on Information Hiding and Multimedia Security. New York: ACM, 2013:59-68.
GUO L, NI J, SHI Y Q. Uniform Embedding for Efficient JPEG Steganography[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5):814-825. DOI:10.1109/TIFS.2014.2312817http://doi.org/10.1109/TIFS.2014.2312817http://ieeexplore.ieee.org/document/6776485/http://ieeexplore.ieee.org/document/6776485/
ZHANG J, CHEN K, QIN C, et al. Distribution-Preserving-Based Automatic Data Augmentation for Deep Image Steganalysis[J]. IEEE Transactions on Multimedia, 2021, 24:4538-4550. DOI:10.1109/TMM.2021.3119994http://doi.org/10.1109/TMM.2021.3119994https://ieeexplore.ieee.org/document/9573412/https://ieeexplore.ieee.org/document/9573412/
ZHANG K, ZUO W, CHEN Y, et al. Beyond a Gaussian Denoiser:Residual Learning of Deep CNN for Image Denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7):3142-3155. DOI:10.1109/TIP.83http://doi.org/10.1109/TIP.83https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83
ZAMIR S W, ARORA A, KHAN S, et al. Learning Enriched Features for Real Image Restoration and Enhancement[C]// European Conference on Computer Vision.Heidelberg:Springer, 2020:492-511.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构