1. 中国科学院大学 计算机科学与技术学院,北京 101408
2. 中国科学院大学 国家计算机网络入侵防范中心,北京 101408
3. 中国科学院大学 沈阳计算技术研究所,辽宁 沈阳 110168
4. 西安电子科技大学 网络与信息安全学院,陕西 西安 710071
5. 中国科学院大学 数学科学学院,北京 101408
6. 中关村实验室,北京 100094
[ "史慧洋(1988—),女,中国科学院大学博士研究生,E-mail:[email protected];" ]
[ "魏靖烜(1998—),男,中国科学院大学沈阳计算技术研究所博士研究生,E-mail:[email protected];" ]
[ "蔡兴业(1998—),男,中国科学院大学沈阳计算技术研究所硕士研究生,E-mail:[email protected];" ]
[ "王鹤(1998—),男,西安电子科技大学博士研究生,E-mail:[email protected];" ]
[ "高随祥(1962—),男,中国科学院大学博士生导师,E-mail:[email protected]" ]
张玉清(1966—),男,教授,Email:[email protected]
扫 描 看 全 文
史慧洋, 魏靖烜, 蔡兴业, 等. 威胁情报提取与知识图谱构建技术研究[J]. 西安电子科技大学学报, 2023,50(4):65-75.
史慧洋, 魏靖烜, 蔡兴业, 等. 威胁情报提取与知识图谱构建技术研究[J]. 西安电子科技大学学报, 2023,50(4):65-75. DOI: 10.19665/j.issn1001-2400.2023.04.007.
目前,攻击者使用的基础设施能适应更多的目标环境,成功侵入目标后,使用合法的用户凭证取得信任,并通过不断学习利用新的漏洞达到攻击目的。为了对抗攻击,提高威胁情报的使用价值,提出由情报搜集、信息抽取、本体构建和知识推理构建威胁情报的知识图谱框架,该框架可实现情报中重要指标的搜索和相互关联。然后基于Bert+BiSLTM+CRF 的失陷指标,识别抽取方法,加以正则匹配机制进行输出限制,用于从文本信息中识别抽取失陷指标信息,并进行结构化威胁信息表达标准格式转换。经过横向和纵向对比,该抽取模型在文本信息抽取中的精度和召回率较高。最后,以APT1为例,构建出威胁情报实体关系图,结合对抗战术和技术知识库框架将攻击行为转换为结构化格式,建立本体与原子本体知识图谱;通过知识图谱关联分析数据之间潜在的关联,发现具有相似性和相关性的威胁情报潜在的关联信息和攻击主体,进行威胁情报的关联分析,为制定防御策略提供依据。
At present,the infrastructure used by attackers can adapt to more target environments.After successfully invading the target,the attackers use legitimate user credentials to gain trust,and continuously learn to exploit new vulnerabilities to achieve the purpose of attacks.In order to combat attacks and to improve the quality and utilization efficiency of the threat intelligence,this paper constructs a knowledge mapping framework of threat intelligence through the following four processes:intelligence collection,information extraction,ontology construction,and knowledge reasoning.The proposed framework can realize the search for and correlation of essential indicators in the intelligence.Then,an indicator of compromise (IOC) recognition extraction method based on the Bert+BISLTM+CRF is proposed and a regular matching mechanism is applied to limit the output for identifying and extracting IOC information from the text information,followed by performing the structured threat information expression (STIX) standard format conversion.The accuracy and recall rate of this extraction model for the text information extraction are higher through horizontal and vertical comparison.Finally,by taking the APT1 as an example,this paper constructs the entity-relationship diagram of threat intelligence.The attack behavior is transformed into a structured format combined with the adversarial tactics,techniques,and common knowledge (ATT & CK) framework.A knowledge map of ontology and atomic ontology is established which is used to analyze the potential associations between data through the knowledge map associations and to discover potential associated information and attack agents in threat intelligence with similarity and correlation.The correlation analysis of threat intelligence is carried out,which provides the basis for the formulation of defense strategy.
威胁情报神经网络本体失陷指标抽取对抗战术和技术知识库存知识图谱
threat intelligenceneural networkontologyIOC extrationATT&CKknowledge graph
PADIA A, KALPAKIS K, FERRARO F, et al. Knowledge Graph Fact Prediction via Knowledge-Enriched Tensor Factorization[J]. Journal of Web Semantics, 2019, 59:100497. DOI:10.1016/j.websem.2019.01.004http://doi.org/10.1016/j.websem.2019.01.004https://linkinghub.elsevier.com/retrieve/pii/S1570826819300046https://linkinghub.elsevier.com/retrieve/pii/S1570826819300046
GONG S, LEE C. Blocis:Blockchain-Based Cyber Threat Intelligence Sharing Framework for Sybil-Resistance[J]. Electronics, 2020, 9(3):521. DOI:10.3390/electronics9030521http://doi.org/10.3390/electronics9030521https://www.mdpi.com/2079-9292/9/3/521https://www.mdpi.com/2079-9292/9/3/521
PUROHIT S, CALYAM P, WANG S, et al. Defensechain:Consortium Blockchain for Cyber Threat Intelligence Sharing and Defense[C]// 2020 2nd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS).Piscataway:IEEE, 2020:112-119.
TRAN H N, TAKASU A. Analyzing Knowledge Graph Embedding Methods from a Multi-Embedding Interaction Perspective (2019)[J/OL].[2019-03-27]. https://arxiv.org/abs/1903.11406v2. https://arxiv.org/abs/1903.11406v2https://arxiv.org/abs/1903.11406v2
何志鹏, 刘鹏, 王鹤. 网络威胁情报标准化建设分析[J]. 信息安全研究, 2021, 7(6):503-511.
HE Zhipeng, LIU Peng, WANG He. Analysis of the Standardization Construction of Network Threat Intelligence[J]. Information Security Research, 2021, 7(6):503-511.
孙铭鸿, 蔡蓓蓓. 基于情报、威胁框架等方式追踪溯源方法研究[J]. 江苏通信, 2022, 38(3):109-112.
SUN Minghong, CAI Beibei. Research on Traceability Methods Based on Intelligence,Threat Framework,and Other Methods[J]. Jiangsu Communication, 2022, 38(3):109-112.
徐留杰, 翟江涛, 杨康, 等. 一种多源网络安全威胁情报采集与封装技术[J]. 网络安全技术与应用, 2018, 214(10):26-29.
XU Liujie, ZHAI Jiangtao, YANG Kang, et al. A Multi-Source Network Security Threat Intelligence Collection and Packaging Technology[J]. Network Security Technology and Application, 2018, 214(10):26-29.
HUANG Z, WEI X, KAI Y. Bidirectional LSTM-CRF Models for Sequence Tagging (2015)[J/OL].[2015-08-09]. https://arxiv.org/abs/1508.01991. https://arxiv.org/abs/1508.01991https://arxiv.org/abs/1508.01991
LONG Z, TAN L, ZHOU S, et al. Collecting Indicators of Compromise from Unstructured Text of Cybersecurity Articles Using Neural-Based Sequence Labelling[C]// 2019 International Joint Conference on Neural Networks (IJCNN).Piscataway:IEEE, 2019:1-8.
LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural Architectures for Named Entity Recognition(2016)[C/OL].[2016-03-04]. https://arxiv.org/abs/1603.01360v1. https://arxiv.org/abs/1603.01360v1https://arxiv.org/abs/1603.01360v1
LANDAUER M, SKOPIK F, WURZENBERGER M, et al. A Framework for Cyber Threat Intelligence Extraction from Raw Log Data[C]// 2019 IEEE International Conference on Big Data (Big Data).Piscataway:IEEE, 2019:3200-3209.
KUROGOME Y, OTSUKI Y, KAWAKOYA Y, et al. EIGER:Automated IOC Generation for Accurate and Interpretable Endpoint Malware Detection[C]// Proceedings of the 35th Annual Computer Security Applications Conference. New York: ACM, 2019:687-701.
胡代旺, 焦一源, 李雁妮. 一种新型高效的文库知识图谱实体关系抽取算法[J]. 西安电子科技大学学报, 2021, 48(6):75-83.
HU Daiwang, JIAO Yiyuan, LI Yanni. A Novel and Efficient Algorithm for Extracting Entity Relationships from Library Knowledge Graph[J]. Journal of Xidian University, 2021, 48(6):75-83.
郭渊博, 李勇飞, 陈庆礼, 等. 融合Focal Loss的网络威胁情报实体抽取[J]. 通信学报, 2022, 43(7):85-92. DOI:10.11959/j.issn.1000-436x.2022132http://doi.org/10.11959/j.issn.1000-436x.2022132
GUO Yuanbo, LI Yongfei, CHEN Qingli, et al. Fusion of Focal Loss for Network Threat Intelligence Entity Extraction[J]. Journal of Communications, 2022, 43(7):85-92.
程顺航, 李志华, 魏涛. 融合自举与语义角色标注的威胁情报实体关系抽取方法[J]. 计算机应用, 2023, 43(5):1445-1453. DOI:10.11772/j.issn.1001-9081.2022040551http://doi.org/10.11772/j.issn.1001-9081.2022040551
CHENG Shunhang, LI Zhihua, WEI Tao. A Threat Intelligence Entity Relationship Extraction Method Combining Bootstrap and Semantic Role Annotation[J]. Computer Applications, 2023, 43(5):1445-1453.
石波, 于然, 朱健. 基于知识图谱的网络空间安全威胁感知技术研究[J]. 信息安全研究, 2022, 8(8):845-853.
SHI Bo, YU Ran, ZHU Jian. Research on Threat Perception Technology for Cyberspace Security Based on Knowledge Graph[J]. Information Security Research, 2022, 8(8):845-853.
董聪, 姜波, 卢志刚, 等. 面向网络空间安全情报的知识图谱综述[J]. 信息安全学报, 2020, 5(5):56-76.
DONG Cong, JIANG Bo, LU Zhigang, et al. A Survey of Knowledge Map for Cyberspace Security Intelligence[J]. Journal of Information Security, 2020, 5(5):56-76. DOI:10.4236/jis.2014.52006http://doi.org/10.4236/jis.2014.52006http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jis.2014.52006http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jis.2014.52006
WU S, ZHANG Y, CAO W. Network Security Assessment Using a Semantic Reasoning and Graph Based Approach[J]. Computers & Electrical Engineering, 2017, 64:96-109.
刘强, 祝鹏程. 基于联合学习的端到端威胁情报知识图谱构建方法[J]. 现代计算机, 2021, 16:16-21.
LIU Qiang, ZHU Pengcheng. A Method for Constructing an End-to-End Threat Intelligence Knowledge Graph Based on Joint Learning[J]. Modern Computer Science, 2021, 16:16-21.
GONG N Z, LIU B. You are Who You Know and How You Behave:Attribute Inference Attacks via Users' Social Friends and Behaviors[C]// Proceedings of the 25th USENIX Conference on Security Symposium. New York: ACM, 2016:979-995.
GASCON H, GROBAUER B, SCHRECK T, et al. Mining Attributed Graphs for Threat Intelligence[C]// ACM on Conference on Data Application Security Privacy. New York: ACM, 2017:15-22.
XU X, CHANG L, QIAN F, et al. Neural Network-Based Graph Embedding for Cross-Platform Binary Code Similarity Detection[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017:363-376.
ZHANG K, LIU J. Review on the Application of Knowledge Graph in Cyber Security Assessment[J]. IOP Conference Series:Materials Science and Engineering, 2020, 768(5):052103. DOI:10.1088/1757-899X/768/5/052103http://doi.org/10.1088/1757-899X/768/5/052103
LIU L, TSAI W T, BHUIYAN M Z A, et al. Automatic Blockchain Whitepapers Analysis via Heterogeneous Graph Neural Network[J]. Journal of Parallel and Distributed Computing, 2020, 145:1-12. DOI:10.1016/j.jpdc.2020.05.014http://doi.org/10.1016/j.jpdc.2020.05.014https://linkinghub.elsevier.com/retrieve/pii/S0743731520302938https://linkinghub.elsevier.com/retrieve/pii/S0743731520302938
OUYANG S, DONG D, XU Y, et al. Communication Optimization Strategies for Distributed Deep Neural Network Training:A Survey[J]. Journal of Parallel and Distributed Computing, 2021, 149:52-65. DOI:10.1016/j.jpdc.2020.11.005http://doi.org/10.1016/j.jpdc.2020.11.005https://linkinghub.elsevier.com/retrieve/pii/S0743731520304068https://linkinghub.elsevier.com/retrieve/pii/S0743731520304068
MAVROEIDIS V, BROMANDER S. Cyber Threat Intelligence Model:An Evaluation of Taxonomies,Sharing Standards,and Ontologies within Cyber Threat Intelligence[C]// 2017 European Intelligence and Security Informatics Conference (EISIC).Piscataway:IEEE, 2017:91-98.
MOUBARAK J, BASSIL C, ANTOUN J. On the Dissemination of Cyber Threat Intelligence Through Hyperledger[C]// 2021 17th International Conference on the Design of Reliable Communication Networks (DRCN).Piscataway:IEEE, 2021:1-6.
崔琳, 杨黎斌, 何清林, 等. 基于开源信息平台的威胁情报挖掘综述[J]. 信息安全学报, 2022, 7(1):1-26.
CUI Lin, YANG Libin, HE Qinglin, et al. A Review of Threat Intelligence Mining Based on Open Source Information Platform[J]. Journal of Information Security, 2022, 7(1):1-26. DOI:10.4236/jis.2016.71001http://doi.org/10.4236/jis.2016.71001http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jis.2016.71001http://www.scirp.org/journal/doi.aspx?DOI=10.4236/jis.2016.71001
左开中, 刘蕊, 赵俊, 等. 融合语义信息的时空关联位置隐私保护方法[J]. 西安电子科技大学学报, 2022, 49(1):67-77.
ZUO Kaizhong, LIU Rui, ZHAO Jun, et al. Method for the Protection of Spatiotemporal Correlation Location Privacy with Semantic Information[J]. Journal of XidIan University, 2022, 49(1):67-77.
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构