1. 成都理工大学 计算机与网络安全学院,四川 成都 610059
2. 电子科技大学 计算机科学与工程学院,四川 成都 611731
3. 鹏城实验室 网络空间安全研究中心,广东 深圳 518055
4. 西南石油大学 计算机科学学院,四川 成都 610500
[ "周让(1987—),男,讲师,E-mail:[email protected];" ]
[ "张小松(1968—),男,教授,E-mail:[email protected];" ]
汪小芬(1982—),女,副教授,E-mail:[email protected]
[ "李冬芬(1979—),女,副教授,E-mail:[email protected];" ]
[ "陈涛(1999—),男,电子科技大学硕士研究生,E-mail:[email protected];" ]
[ "张晓均(1985—),男,副教授,E-mail:[email protected]" ]
扫 描 看 全 文
周让, 张小松, 汪小芬, 等. 支持隐私保护的物联网数据筛选方案[J]. 西安电子科技大学学报, 2023,50(4):45-53.
周让, 张小松, 汪小芬, 等. 支持隐私保护的物联网数据筛选方案[J]. 西安电子科技大学学报, 2023,50(4):45-53. DOI: 10.19665/j.issn1001-2400.2023.04.005.
随着工业5.0的推广,物联网需要对运行数据进行实时采集和上传存储。为了更精确地描述和分析物联网工作状态,需要采集高精度实时数据。然而物联网不同类型数据的混合存储会降低数据分析效率,为了提高混合存储环境中的数据分析效率,需在数据上传过程中对数据进行分流来实现数据的分类存储。传统的数据分流方法只能对明文数据依据其来源来实现分流,而明文数据的来源信息会泄露设备的身份隐私。因此,如何在不泄露隐私的基础上,通过密文分流实现物联网数据的分类存储,成了物联网数据安全管理亟待解决的问题。文中提出一个隐私保护的物联网数据筛选方案,在保障内容和设备身份隐私的基础上,通过数据发送设备的身份生成筛选陷门来设定中继节点设备数据筛选规则,在数据上传阶段对数据进行筛选分流,将混合的异源数据按数据来源分类为同源数据进行分别存储,为后期的数据访问控制及分析提供服务支撑。实验结果表明,所提方案比同类型的方案执行效率更高。
With the development of industry 5.0,the operational data need to be collected and uploaded in real time in the practical Internet of Things (IoT).To describe and analyze the working state of the IoT more precisely,high accurate and real-time data are required.Then,in practical applications,many different types of IoT data are stored together without classifying,which could reduce the efficiency of data analysis.In order to improve the efficiency of data analysis in the hybrid data storage environment,it is necessary to use the method of data shunting in the process of data upload to realize the classified storage of data.However,the traditional data shunting method shunts the plaintext data according to its source identity,during which the source information on the plaintext data will leak the identity and privacy of the IoT devices.Therefore,how to realize the classified storage of these IoT data through the data shunting without revealing the privacy has become an urgent problem to be solved in the security management of the IoT data.In this paper,a new privacy-preserving IoT data filtering scheme is proposed.On the basis of maintaining the context and device identity privacy,each data filtering rule is set by a filtering trapdoor,which is computed from the identity of the data source device.Then,the data can be classified and routed by the relay nodes following the given rules in the data uploading phase,from which the heterologous data can be classified and the homologous data are stored together,which can help further data access control and data analysis.Experiment results show that our scheme is efficient and practical.
物联网数据筛选筛选陷门筛选标签设备身份隐私
Internet of Thingsdata filteringfiltering trapdoorfiltering indexdevice identity privacy
吴振豪, 高健博, 李青山, 等. 数据安全治理中的安全技术研究[J]. 信息安全研究, 2021, 7(10):907-914.
WU Zhenhao, GAO Jianbo, LI Qingshan, et al. Research on Security Technology in Data Security Governance[J]. Journal of Information Security Research, 2021, 7(10):907-914.
LYU L J, NANDASKUMAR K, RUBINSTEIN B, et al. PPFA:Privacy Preserving Fog-Enabled Aggregation in Smart Grid[J]. IEEE Transactions on Industrial Informatics, 2018, 14(8):3733-3744. DOI:10.1109/TII.9424http://doi.org/10.1109/TII.9424https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9424
GE C P, YIN C C, LIU Z, et al. A Privacy Preserve Big Data Analysis System for Wearable Wireless Sensor Network[J]. Computers & Security, 2020(96):1-10.
侯戌非. 物联网环境下海量多源异构数据的存储算法[J]. 宁夏师范学院学报, 2022, 43(7):80-85.
HOU Xufe. The Storage Algorithm of Multi-Source Heterogeneous Data in Internet of Things Environment[J]. Journal of Ningxia Normal University, 2022, 43(7):80-85.
杨颜博, 张嘉伟, 马建峰. 一种使用区块链保护车联网数据隐私的方法[J]. 西安电子科技大学学报, 2021, 48(3):21-30.
YANG Yanbo, ZHANG Jiawei, MA Jianfeng. Method for Using the Blockchain to Protect Data Privacy of IoV[J]. Journal of Xidian University, 2021, 48(3):21-30.
SHEN H, ZHANG M W, WANG H, et al. A Lightweight Privacy-Preserving Fair Meeting Location Determination Scheme[J]. IEEE Internet of Things Journal, 2020, 7(4):3083-3093. DOI:10.1109/JIoT.6488907http://doi.org/10.1109/JIoT.6488907https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907
SHERRY J, LAN C, POPA R A, et al. BlindBox:Deep Packet Inspection over Encrypted Traffic[J]. ACM Sigcomm Computer Communication Review, 2015, 45(4):213-226. DOI:10.1145/2829988.2787502http://doi.org/10.1145/2829988.2787502https://dl.acm.org/doi/10.1145/2829988.2787502https://dl.acm.org/doi/10.1145/2829988.2787502
NING J T, POH G S, LOH J C, et al. PrivDPI:Privacy-Preserving Encrypted Traffic Inspection with Reusable Obfuscated Rules[C]// ACM Conference on Computer and Communications Security. New York: ACM, 2019:1657-1670.
TANG Q, PEJO B, WANG H. Protect both Integrity and Confidentiality in Outsourcing Collaborative Filtering Computations[C]// IEEE International Conference on Cloud Computing.Piscataway:IEEE, 2016:941-946.
MCCANNE S, JACOBSON V. The BSD Packet Filter:A New Architecture for User-Level Packet Capture[C]// USENIX Winter Conference on USENIX Winter Conference.Berkeley:USENIX, 1993:259-270.
LEE C H, CHUANG C W. Efficient Search in Graph Databases Using Cross Filtering[J]. Information Sciences, 2014, 286:1-18. DOI:10.1016/j.ins.2014.06.047http://doi.org/10.1016/j.ins.2014.06.047https://linkinghub.elsevier.com/retrieve/pii/S002002551400704Xhttps://linkinghub.elsevier.com/retrieve/pii/S002002551400704X
LIU J X, TANG M D, ZHENG Z B, et al. Location-Aware and Personalized Collaborative Filtering for Web Service Recommendation[J]. IEEE Transactions on Services Computing, 2016, 9(5):686-699. DOI:10.1109/TSC.4629386http://doi.org/10.1109/TSC.4629386https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4629386https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4629386
OGONJI M M, OKEYO G, WAFULA J M. A Survey on Privacy and Security of Internet of Things[J]. Computer Science Review, 2020, 38(7):100312. DOI:10.1016/j.cosrev.2020.100312http://doi.org/10.1016/j.cosrev.2020.100312https://linkinghub.elsevier.com/retrieve/pii/S1574013720304123https://linkinghub.elsevier.com/retrieve/pii/S1574013720304123
曾勇, 吴正远, 董丽华, 等. 加密流量中的恶意流量识别技术[J]. 西安电子科技大学学报, 2021, 48(3):170-187.
ZENG Yong, WU Zhengyuan, DONG Lihua, et al. Research on Malicious Traffic Identification Technology in Encrypted Traffic[J]. Journal of Xidian University, 2021, 48(3):170-187.
JIANG P, WANG Q, HUANG M, et al. Building In-the-Cloud Network Functions:Security and Privacy Challenges[J]. Proceedings of the IEEE, 2021, 109(12):1888-1919. DOI:10.1109/JPROC.2021.3127277http://doi.org/10.1109/JPROC.2021.3127277https://ieeexplore.ieee.org/document/9645060/https://ieeexplore.ieee.org/document/9645060/
OSTROVSKY R, SKEITH. III W E. Private Searching on Streaming Data[J]. Journal of Cryptology, 2007, 20(4):397-430. DOI:10.1007/s00145-007-0565-3http://doi.org/10.1007/s00145-007-0565-3http://link.springer.com/10.1007/s00145-007-0565-3http://link.springer.com/10.1007/s00145-007-0565-3
YUAN X L, WANG X Y, LIN J X, et al. Privacy-Preserving Deep Packet Inspection in Outsourced Middleboxes[C]// In 35th Annual IEEE International Conference on Computer Communications,INFOCOM 2016.Piscataway:IEEE, 2016:1-9.
KIM J, CAMTEPE S, BAEK J, et al. P2DPI:Practical and Privacy-Preserving Deep Packet Inspection[C]// ASIA CCS 21:ACM Asia Conference on Computer and Communications Security. New York: ACM, 2021:135-146.
NING J, HUANG X, POH G S, et al. Pine:Enabling Privacy-Preserving Deep Packet Inspection on TLS with Rule-Hiding and Fast Connection Establishment[C]// European Symposium on Research in Computer Security.Berlin:Springer, 2020:3-22.
WEN J, LIU J, WU A, et al. A General Framework for Matching Pattern Hiding in Deep Packet Inspection[C]// International Conference on Information Security Applications.Berlin:Springer, 2021:243-254.
REN H, LI H W, LIU D X, et al. Privacy-Preserving Efficient Verifiable Deep Packet Inspection for Cloud-Assisted Middlebox[J]. IEEE Transactions on Cloud Computing, 2022, 10(2):1052-1064. DOI:10.1109/TCC.2020.2991167http://doi.org/10.1109/TCC.2020.2991167https://ieeexplore.ieee.org/document/9082166/https://ieeexplore.ieee.org/document/9082166/
REN H, LI H W, LIU D X, et al. Enabling Secure and Versatile Packet Inspection with Probable Cause Privacy for Outsourced Middlebox[J]. IEEE Transactions on Cloud Computing, 2022, 10 (4):2580-2594. DOI:10.1109/TCC.2021.3059026http://doi.org/10.1109/TCC.2021.3059026https://ieeexplore.ieee.org/document/9354035/https://ieeexplore.ieee.org/document/9354035/
BONEHD, CRESCENZO G D, OSTROVSKY R, et al. Public Key Encryption with Keyword Search[C]// International Conference on the Theory and Applications of Cryptographic Techniques.Berlin:Springer, 2004:506-522.
JING P, GUO F C, SUSILO W, et al. Keyword Attacks and Privacy Preserving in Public-Key-Based Searchable Encryption[J]. Encyclopedia of Big Data Technologies, 2019:1067-1087.
LU R, LIN X, LUAN T H, et al. PRefilter:An Efficient Privacy-Preserving Relay Filtering Scheme for Delay Tolerant Networks[C]// International Conference on Computer Communications.Piscataway:IEEE, 2012:1395-1403.
WANG X F, MU Y, CHEN R M. Privacy-Preserving Data Packet Filtering Protocol with Source IP Authentication[J]. Wireless Personal Communication, 2017, 95:3509-3537. DOI:10.1007/s11277-017-4010-0http://doi.org/10.1007/s11277-017-4010-0http://link.springer.com/10.1007/s11277-017-4010-0http://link.springer.com/10.1007/s11277-017-4010-0
JING P, GUO F C, SUSILO W, et al. PPFilter:Provider Privacy-Aware Encrypted Filtering System[J]. IEEE Transactions on Services Computing, 2021, 14(5):1519-1530. DOI:10.1109/TSC.2018.2873656http://doi.org/10.1109/TSC.2018.2873656https://ieeexplore.ieee.org/document/8481589/https://ieeexplore.ieee.org/document/8481589/
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构