1. 西安电子科技大学 网络与信息安全学院,陕西 西安 710126
2. 中国电子科技集团公司第三十研究所 保密通信重点实验室,四川 成都 610041
[ "姜奇(1983—),男,教授,E-mail:[email protected];" ]
[ "赵晓敏(1999—),女,西安电子科技大学硕士研究生,E-mail:[email protected];" ]
赵贵川(1996—),男,西安电子科技大学博士研究生,E-mail:[email protected]
[ "王金花(1995—),女,中国电子科技集团公司第三十研究所助理工程师,E-mail:[email protected];" ]
[ "李兴华(1978—),男,教授,E-mail:[email protected]" ]
扫 描 看 全 文
姜奇, 赵晓敏, 赵贵川, 等. 自适应分数级融合的多模态生物特征认证[J]. 西安电子科技大学学报, 2023,50(4):11-21.
姜奇, 赵晓敏, 赵贵川, 等. 自适应分数级融合的多模态生物特征认证[J]. 西安电子科技大学学报, 2023,50(4):11-21. DOI: 10.19665/j.issn1001-2400.2023.04.002.
近年来,基于生物特征的身份认证在日常生活中扮演着至关重要的角色。多模态认证方法通过融合多种生物特征对用户进行身份认证,可以提供比单模态认证更高的安全性和认证准确性。然而,现有的多模态认证方案大多采用固定参数和规则的融合策略来实现认证,无法适应不同的认证场景,从而导致次优的认证性能。针对上述问题,提出了一种基于自适应粒子群优化算法的自适应分数级融合多模态认证方案。首先,方案根据上下文信息来确定当前认证场景所需的安全等级,接着自适应地选择融合策略的规则和参数,在提供安全身份认证的同时保证系统具有最佳的认证性能。其次,对采集的多模态生物特征数据进行预处理和特征提取,再使用所选择的最优融合策略来实现身份认证。最后,在公开的数据集上对自适应分数级融合的多模态认证方案进行实验分析,结果表明所提方案在真实数据上的可行性和有效性;在相同的认证安全等级下,本方案实现了比现有方案更小的全局错误率。
In recent years,biometric-based authentication has played a vital role in our daily life.The multi-modal authentication method by fusing multiple biometrics to authenticate users can provide a higher security and authentication accuracy than single-modal authentication.However,most of the existing multi-modal authentication schemes adopt fusion strategies with fixed rules and parameters to achieve authentication,which cannot adapt to different authentication scenarios,thus resulting in a sub-optimal authentication performance.To solve the above problems,this paper proposes an Adaptive Particle Swarm Optimization based multi-modal authentication scheme that adaptively fuses multiple biometrics at the score level.First,the proposed scheme determines the security level required for the current authentication scenario according to the context information,and then adaptively selects rules and parameters of the fusion strategy to provide secure authentication and to ensure the best authentication performance of the system.Second,the collected multi-modal biometric data after preprocessing and feature extraction is fused using the selected optimal fusion strategy to achieve authentication.Finally,experimental analyses on the public dataset demonstrate that the proposed scheme is of feasibility and effectiveness by actual data,and can achieve a smaller global error rate than existing schemes under the same authentication security requirements.
自适应多模态认证分数级融合优化算法
adaptivemulti-modalauthenticationscore-level fusionoptimization
OMETOV A, PETROV S, BEZZATEEV S, et al. Challenges of Multi-Factor Authentication for Securing Advanced IoT Applications[J]. IEEE Network, 2019, 33(2):82-88.
JIANG Q, ZHANG X, ZHANG N, et al. Three-Factor Authentication Protocol Using Physical Unclonable Function for IoV[J]. Computer Communications, 2021, 173:45-55. DOI:10.1016/j.comcom.2021.03.022http://doi.org/10.1016/j.comcom.2021.03.022https://linkinghub.elsevier.com/retrieve/pii/S0140366421001249https://linkinghub.elsevier.com/retrieve/pii/S0140366421001249
JIANG Q, ZHANG N, NI J, et al. Unified Biometric Privacy Preserving Three-Factor Authentication and Key Agreement for Cloud-Assisted Autonomous Vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9):9390-9401. DOI:10.1109/TVT.25http://doi.org/10.1109/TVT.25https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=25
SANDIP K S M, JHA V K. Multibiometric Fusion Strategy and Its Applications:A Review[J]. Information Fusion, 2019, 49(9):174-204. DOI:10.1016/j.inffus.2018.11.018http://doi.org/10.1016/j.inffus.2018.11.018https://linkinghub.elsevier.com/retrieve/pii/S1566253518300848https://linkinghub.elsevier.com/retrieve/pii/S1566253518300848
SADHYA D, SINGH S K. Construction of A Bayesian Decision Theory-Based Secure Multimodal Fusion Framework for Soft Biometric Traits[J]. IET Biometrics, 2018, 7(3):251-259. DOI:10.1049/bme2.v7.3http://doi.org/10.1049/bme2.v7.3https://onlinelibrary.wiley.com/toc/20474946/7/3https://onlinelibrary.wiley.com/toc/20474946/7/3
GSW A, TS B, KS C, et al. Robust Multimodal Biometric System Based on Optimal Score Level Fusion Model[J]. Expert Systems with Applications, 2019, 116(2):364-376. DOI:10.1016/j.eswa.2018.08.036http://doi.org/10.1016/j.eswa.2018.08.036https://linkinghub.elsevier.com/retrieve/pii/S0957417418305517https://linkinghub.elsevier.com/retrieve/pii/S0957417418305517
DWIVEDI R, DEY S. Score-Level Fusion for Cancelable Multi-Biometric Verification[J]. Pattern Recognition Letters, 2019, 126(9):58-67. DOI:10.1016/j.patrec.2018.04.022http://doi.org/10.1016/j.patrec.2018.04.022https://linkinghub.elsevier.com/retrieve/pii/S0167865518301429https://linkinghub.elsevier.com/retrieve/pii/S0167865518301429
CAMARA C, PERIS-LOPEZ P, GONZALEZ-MANZANO L, et al. Real-Time Electrocardiogram Streams for Continuous Authentication[J]. Applied Soft Computing, 2018, 68(7):784-794. DOI:10.1016/j.asoc.2017.07.032http://doi.org/10.1016/j.asoc.2017.07.032https://linkinghub.elsevier.com/retrieve/pii/S156849461730443Xhttps://linkinghub.elsevier.com/retrieve/pii/S156849461730443X
WU C, HE K, CHEN J, et al. Liveness is Not Enough:Enhancing Fingerprint Authentication with Behavioral Biometrics to Defeat Puppet Attacks[C]// 29th USENIX Security Symposium.Berkeley:USENIX, 2020:2219-2236.
GADALETA M, ROSSI M. IDNet Smartphone-Based Gait Recognition with Convolutional Neural Networks[J]. Pattern Recognition, 2016, 74(2):25-37. DOI:10.1016/j.patcog.2017.09.005http://doi.org/10.1016/j.patcog.2017.09.005https://linkinghub.elsevier.com/retrieve/pii/S0031320317303485https://linkinghub.elsevier.com/retrieve/pii/S0031320317303485
ROSS A, POH N. Multibiometric Systems:Overview,Case Studies and Open Issues[M]. Handbook of Remote Biometrics.Heidelberg:Springer, 2014:273-292.
ISO. Information Technology-Biometric Presentation Attack Detection-Part 3:Testing and Reporting:ISO/IEC:30107-3:2017[S/OL]. [2017-09].https://www.iso.org/standard/67381.html. https://www.iso.org/standard/67381.htmlhttps://www.iso.org/standard/67381.html
EBERZ S, PAOLETTI N, ROESCHLIN M, et al. Broken Hearted:How to Attack ECG Biometrics[C]// Network and Distributed System Security Symposium 2017(NDSS). San Diego: NDSS, 2017:1-15.
PHOHAV V, SERWADDA A. When Kids' Toys Breach Mobile Phone Security[C]// Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2013:559-610.
EBERZ S, LOVISOTTO G, PATANE A, et al. When Your Fitness Tracker Betrays You:Quantifying the Predictability of Biometric Features Across Contexts[C]// 2018 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2018:889-905.
BALA N, GUPTA R, KUMAR A. Multimodal Biometric System Based on Fusion Techniques:A Review[J]. Information Security Journal:A Global Perspective, 2022, 31(3):289-337. DOI:10.1080/19393555.2021.1974130http://doi.org/10.1080/19393555.2021.1974130https://www.tandfonline.com/doi/full/10.1080/19393555.2021.1974130https://www.tandfonline.com/doi/full/10.1080/19393555.2021.1974130
刘礼才, 李锐光, 殷丽华, 等. 面向移动智能设备的多特征融合隐式鉴别机制研究[J]. 电子学报, 2016, 44(11):2713-2719. DOI:10.3969/j.issn.0372-2112.2016.11.021http://doi.org/10.3969/j.issn.0372-2112.2016.11.021
LIU Licai, LI Ruiguang, YIN Lihua, et al. Research on Multi-Feature Fusion Impact Authentication for Intelligent Mobile Device[J]. Acta Electronica Sinica, 2016, 44(11):2713-2719. DOI:10.3969/j.issn.0372-2112.2016.11.021http://doi.org/10.3969/j.issn.0372-2112.2016.11.021
姜奇, 文悦, 张瑞杰, 等. 面向智能手机的自适应触屏持续认证方案[J]. 电子学报, 2022, 50(5):1131-1139. DOI:10.12263/DZXB.20210624http://doi.org/10.12263/DZXB.20210624
JIANG Qi, WEN Yue, ZHANG Ruijie, et al. An Adaptive Touchscreen Based Continuous Authentication Scheme for Smart Phones[J]. Acta Electronica Sinica, 2022, 50(5):1131-1139. DOI:10.12263/DZXB.20210624http://doi.org/10.12263/DZXB.20210624
KHODADOUST J, MEDINA-PEREZ M A, MONROY R, et al. A Multibiometric System Based on the Fusion of Fingerprint,Finger-Vein,and Finger-Knuckle-Print[J]. Expert Systems with Applications, 2021, 176:114687. DOI:10.1016/j.eswa.2021.114687http://doi.org/10.1016/j.eswa.2021.114687https://linkinghub.elsevier.com/retrieve/pii/S0957417421001287https://linkinghub.elsevier.com/retrieve/pii/S0957417421001287
AIZI K, OUSLIM M. Score Level Fusion in Multi-Biometric Identification Based on Zones of Interest[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(1):1498-1509.
PUROHIT H, AJMERA P K. Optimal Feature Level Fusion for Secured Human Authentication in Multimodal Biometric System[J]. Machine Vision and Applications, 2021, 32(1):1-12. DOI:10.1007/s00138-020-01119-9http://doi.org/10.1007/s00138-020-01119-9
SITOVAZ, SEDENKA J, YANG Q, et al. HMOG:New Behavioral Biometric Features for Continuous Authentication of Smartphone Users[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(5):877-892. DOI:10.1109/TIFS.2015.2506542http://doi.org/10.1109/TIFS.2015.2506542http://ieeexplore.ieee.org/document/7349202/http://ieeexplore.ieee.org/document/7349202/
HANMANDLU M, GROVER J, GUREJA A, et al. Score Level Fusion of Multimodal Biometrics Using Triangular Norms[J]. Pattern Recognition Letters, 2011, 32(14):1843-1850. DOI:10.1016/j.patrec.2011.06.029http://doi.org/10.1016/j.patrec.2011.06.029https://linkinghub.elsevier.com/retrieve/pii/S0167865511002133https://linkinghub.elsevier.com/retrieve/pii/S0167865511002133
VEERAMACHANENI K K, OSADCIW L A, VARSHNEY P K. An Adaptive Multimodal Biometric Management Algorithm[J]. IEEE Transactions on Systems,Man and Cybernetics, 2005, 35(3):344-356.
KUMAR A, KANHANGAD V, ZHANG D. A New Framework for Adaptive Multimodal Biometrics Management[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(1):92-102. DOI:10.1109/TIFS.2009.2031892http://doi.org/10.1109/TIFS.2009.2031892http://ieeexplore.ieee.org/document/5412146/http://ieeexplore.ieee.org/document/5412146/
SINGH M, SINGH R, ROSS A. A Comprehensive Overview of Biometric Fusion[J]. Information Fusion, 2019, 52:187-205. DOI:10.1016/j.inffus.2018.12.003http://doi.org/10.1016/j.inffus.2018.12.003
VATSA M, R SINGH, NOORE A, et al. On the Dynamic Selection of Biometric Fusion Algorithms[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(3):470-479. DOI:10.1109/TIFS.2010.2056683http://doi.org/10.1109/TIFS.2010.2056683http://ieeexplore.ieee.org/document/5504207/http://ieeexplore.ieee.org/document/5504207/
EDWARDS T, HOSSAIN M S. Effectiveness of Deep Learning on Serial Fusion Based Biometric Systems[J]. IEEE Transactions on Artificial Intelligence, 2021, 2(1):28-41. DOI:10.1109/TAI.2021.3064003http://doi.org/10.1109/TAI.2021.3064003https://ieeexplore.ieee.org/document/9369857/https://ieeexplore.ieee.org/document/9369857/
WALIA G S, SINGH T, SINGH K, et al. Robust Multimodal Biometric System Based on Optimal Score Level Fusion Model[J]. Expert Systems with Applications, 2019, 116(2):364-376. DOI:10.1016/j.eswa.2018.08.036http://doi.org/10.1016/j.eswa.2018.08.036https://linkinghub.elsevier.com/retrieve/pii/S0957417418305517https://linkinghub.elsevier.com/retrieve/pii/S0957417418305517
ALAGARSAMY S B, MURUGAN K. Multimodal of Ear and Face Biometric Recognition Using Adaptive Approach Runge-Kutta Threshold Segmentation and Classifier with Score Level Fusion[J]. Wireless Personal Communications, 2022, 124(2):1061-1080. DOI:10.1007/s11277-021-09394-zhttp://doi.org/10.1007/s11277-021-09394-z
ZHANZ H, ZHANG J, LI Y, et al. Adaptive Particle Swarm Optimization[J]. IEEE Transactions on Systems,Man,and Cybernetics, 2009, 39(6):1362-1381.
YANG Q, PENG G, NGUYEN D T, et al. A Multimodal Data Set for Evaluating Continuous Authentication Performance in Smartphones[C]// Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. New York: ACM, 2014:358-359.
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构