西安电子科技大学 雷达信号处理全国重点实验室,陕西 西安 710071
[ "苏海龙(1995—),男,西安电子科技大学博士研究生,E-mail:[email protected]。" ]
水鹏朗(1967—),男,教授,E-mail:[email protected]
扫 描 看 全 文
苏海龙, 水鹏朗. 采用双迭代寻优算法的舰船复HRRP估计[J]. 西安电子科技大学学报, 2023,50(6):105-119.
苏海龙, 水鹏朗. 采用双迭代寻优算法的舰船复HRRP估计[J]. 西安电子科技大学学报, 2023,50(6):105-119. DOI: 10.19665/j.issn1001-2400.20221104.
针对非高斯海杂波背景下线性规划和迭代最小化稀疏恢复方法中目标散射点模型建模不精确导致舰船复高分辨距离像估计和径向尺寸估计性能下降的问题,提出了一种散射点位置和距离像幅度交替迭代寻优的新算法。该算法首先利用线性规划或迭代最小化稀疏恢复方法对舰船复高分辨距离像进行估计,然后采用拟牛顿法估计目标各个散射点在距离单元内的位置微偏移,在不增加模型复杂度的情况下构造出更加精细的目标散射点模型。重复利用上述双迭代过程,直到距离像的恢复误差满足预先设定的要求。通过仿真和实测数据实验对几种稀疏恢复方法的舰船复高分辨距离像估计性能以及径向尺寸估计性能进行了分析与对比。实验结果表明,提出的双迭代寻优算法与沿距离临界采样的线性规划和迭代最小化稀疏恢复方法相比,具有更低的舰船复高分辨距离像估计误差和径向尺寸估计误差;与沿距离过采样高分辨距离像模型的线性规划稀疏恢复方法相比,该方法在保持相近复高分辨距离像估计和径向尺寸估计精度的情况下显著减少了计算时间。
In estimation of the complex high-resolution range profile(HRRP) of a ship in the sea clutter,the inaccurate target scattering model leads to the performance degradation of the existing linear program-based(LP-based) sparse recovery method and the sparse recovery method via iterative minimization(SRIM).In this paper,a bi-iterative optimization algorithm is proposed to solve this problem.The algorithm first adopts the LP-based sparse recovery method or SRIM method to estimate the complex HRRP of the ship at a given HRRP model and then tunes the position of the scatterer at each range cell by using the quasi-Newton algorithm to construct a more refined target scattering point model with the same scale.The bi-iterative process above is repeated until the recovery error of the ship HRRP meets the demand specified in advance.Through simulation and measured data experiments,the performance of ship complex HRRP estimation and that of radial size estimation with several sparse recovery methods are analyzed and compared.Experimental results show that the proposed bi-iterative optimization algorithm attains less estimation errors in ship complex HRRP and radial size than the LP-based sparse recovery method and SRIM method and requires much less computational time when it attains a comparable performance with the LP-based sparse recovery method using the oversampled HRRP model.
线性规划杂波舰船复高分辨距离像估计径向尺寸估计稀疏恢复方法
linear programmingclutterestimation of complex high-resolution range profile of shipradial size estimationsparse recovery method
陈健, 杜兰, 廖磊瑶. 基于参数化统计模型的雷达HRRP目标识别方法综述[J]. 雷达学报, 2022, 11(6):1020-1047.
CHEN Jian, DU Lan, LIAO Leiyao. Survey of Radar HRRP Target Recognition Based on Parametric Statistical Model[J]. Journal of Radars, 2022, 11(6):1020-1047.
徐彬, 张永顺, 张秦, 等. 采用乘性RNN的雷达HRRP目标识别[J]. 西安电子科技大学学报, 2021, 48(2):49-54.
XU Bin, ZHANG Yongshun, ZHANG Qin, et al. Radar HRRP Target Recognition Based on the Multiplicative RNN Model[J]. Journal of Xidian University, 2021, 48(2):49-54.
郭泽坤, 田隆, 韩宁, 等. 采用CNN-SSD的雷达HRRP小样本目标识别方法[J]. 西安电子科技大学学报, 2021, 48(2):1-14.
GUO Zekun, TIAN Long, HAN Ning, et al. Radar HRRP Based Few-Shot Target Recognition with CNN-SSD[J]. Journal of Xidian University, 2021, 48(2):1-14.
JIANG M Z, YANG X Z, DONG Z Y, et al. Ship Classification Based on Superstructure Scattering Features in SAR Images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(5):616-620. DOI:10.1109/LGRS.2016.2514482http://doi.org/10.1109/LGRS.2016.2514482http://ieeexplore.ieee.org/document/7445170/http://ieeexplore.ieee.org/document/7445170/
APRILE A, GROSSI E, LOPS M, et al. Track-Before-Detect for Sea Clutter Rejection:Tests with Real Data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(3):1035-1045. DOI:10.1109/TAES.2016.140851http://doi.org/10.1109/TAES.2016.140851http://ieeexplore.ieee.org/document/7511839/http://ieeexplore.ieee.org/document/7511839/
李杉, 张坤, 水鹏朗. 近海船长分布建模与雷达舰船分类能力评估[J]. 西安电子科技大学学报, 2021, 48(2):84-91.
LI Shan, ZHNAG Kun, SHUI Penglang. Ship Length Distribution Modeling on China Offshore and Ability Evaluation of Radar Ship Classification[J]. Journal of Xidian University, 2021, 48(2):84-91.
SHUI P L, ZHANG K. Ship Radial Size Estimation in High-Resolution Maritime Surveillance Radars via Sparse Recovery Using Linear Programming[J]. IEEE Access, 2019, 7:70673-70688. DOI:10.1109/Access.6287639http://doi.org/10.1109/Access.6287639https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
ZHANG K, SHUI P L, FENG Y. Detection of Sea-Surface Small Targets Masked by Range Sidelobes of Large Objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 58(2):1446-1461. DOI:10.1109/TAES.2021.3116120http://doi.org/10.1109/TAES.2021.3116120https://ieeexplore.ieee.org/document/9551734/https://ieeexplore.ieee.org/document/9551734/
张坤. 高分辨雷达舰船距离像估计和遮蔽小目标检测方法研究[D]. 西安: 西安电子科技大学, 2021.
DAVIS R M, FANTE R L, PERRY R P. Phase Coded Waveforms for Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1):401-408. DOI:10.1109/TAES.2007.357142http://doi.org/10.1109/TAES.2007.357142http://ieeexplore.ieee.org/document/4194780/http://ieeexplore.ieee.org/document/4194780/
LIAO K, GUI G, CHEN Z, et al. High Resolution Range Profile Based Extraction of Radar Target Length[J]. International Journal of the Physical Sciences, 2011, 6(23):5503-5510.
ZHANG K, SHUI P L. Estimation of Complex High-Resolution Range Profiles of Ships by Sparse Recovery Iterative Minimization Method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5):3042-3056. DOI:10.1109/TAES.2021.3068431http://doi.org/10.1109/TAES.2021.3068431https://ieeexplore.ieee.org/document/9385892/https://ieeexplore.ieee.org/document/9385892/
TAN X, ROBERTS W, LI J, et al. Sparse Learning via Iterative Minimization with Application to Mimo Radar Imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(3):1088-1101. DOI:10.1109/TSP.2010.2096218http://doi.org/10.1109/TSP.2010.2096218http://ieeexplore.ieee.org/document/5654598/http://ieeexplore.ieee.org/document/5654598/
FLETCHER R. Practical Methods of Optimization[M]Second Edition. Hoboken: John Wiley & Sons, 2000:49-68.
CARRETERO-MOYA J, GISMERO-MENOYO J, BLANCO-DEL-CAMPO A, et al. Statistical Analysis of a High-Resolution Sea-Clutter Database[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(4):2024-2037. DOI:10.1109/TGRS.2009.2033193http://doi.org/10.1109/TGRS.2009.2033193http://ieeexplore.ieee.org/document/5325631/http://ieeexplore.ieee.org/document/5325631/
SANGSTON K J, GINI F, GRECO M V. Coherent Radar Target Detection in Heavy-Tailed Compound-Gaussian Clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):64-77. DOI:10.1109/TAES.2012.6129621http://doi.org/10.1109/TAES.2012.6129621http://ieeexplore.ieee.org/document/6129621/http://ieeexplore.ieee.org/document/6129621/
于涵, 水鹏朗, 施赛楠, 等. 广义 Pareto 分布海杂波模型参数的组合双分位点估计方法[J]. 电子与信息学报, 2019, 41(12):2836-2843.
YU Han, SHUI Penglang, SHI Sainan, et al. Combined Bipercentile Parameter Estimation of Generalized Pareto Distributed Sea Clutter Model[J]. Journal of Electronics & Information Technology, 2019, 41(12):2836-2843.
FENG B, CHEN B, LIU H W. Radar HRRP Target Recognition with Deep Networks[J]. Pattern Recognition, 2017, 61(C):379-393. DOI:10.1016/j.patcog.2016.08.012http://doi.org/10.1016/j.patcog.2016.08.012https://linkinghub.elsevier.com/retrieve/pii/S0031320316302254https://linkinghub.elsevier.com/retrieve/pii/S0031320316302254
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构